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Abstract. We introduce a formal framework based on formal concept
lattices, or Galois lattices, that categorizes epistemic communities auto-
matically and hierarchically, rebuilding a relevant taxonomy in the form
of a hypergraph of significant epistemic sub-communities. The longitudi-
nal study of these static pictures makes historical description possible,
by capturing epistemological descriptions through stylized facts such as
field emergence, decline, specialization and interaction (merging or split-
ting). The method is applied to empirical data describing the evolution
of a particular community of scientists (embryologists working on the
model-animal “zebrafish”), and successfully validated by categories and
histories given by domain experts.
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Introduction

Scientists, journalists, socio-cultural communities with common references are
various instances of the society of knowledge, being smaller, embedded societies
with specific topics; partially independent, partially overlapping. Any knowledge
community — the whole society, biologists, embryologists working on a particu-
lar model-animal — appears to be structured in turn in various subcommunities
contributing to knowledge creation in a decentralized and complementary man-
ner. Expertise is indeed heterogenously distributed over all agents: boundaries
appear between subgroups, both horizontally, with distinct areas of competence,
and vertically, with different levels of generality for appraising a given topic.

Yet, while agents can potentially access a large part of the knowledge pro-
duced by the whole epistemic community, they actually know only a small por-
tion of it, prominantly because of cognitive and physical limitations. In this
respect, it is of utmost interest to have tools enabling agents to understand the
activity of their knowledge community, at any level of specificity or generality.
More precisely, agents have an implicit (meta-)knowledge of the structure of
the larger global community they are participating in: embryologists know what
molecular biology, biology, and science in general are about. But this knowledge,
limited and subjective, resembles that of a folk taxonomy, in the anthropological



sense [28], that is, a taxonomy proper to an individual and made of its own expe-
rience, as opposed to scientific taxonomies, deemed objective and systematic [2].
Hence, epistemologists often have the last word in elaborating and validating
credible meta-knowledge: expert-made taxonomies are prodigiously more reli-
able than folk taxonomies, but still lack precision, take an enormous amount of
work, and rarely investigate comprehensively the whole community.

We use formal concept lattices, or Galois lattices, to appraise the taxonomy
of a given knowledge community, by building and ordering its epistemic hyper-
graph. An epistemic hypergraph is a graph of epistemic communities, gathering
both agents and notions (or concepts, in the usual sense). Essentially, an epis-
temic community is a group of agents interested in some common knowledge
issues, using shared paradigms and meanings [9, 17]: for instance a group of re-
search investigating a precise topic. This is however not necessarily restricted
to academic groups, and an epistemic community needs not be a community of
practice either [26]; although a community of practice is certainly a special type
of knowledge community.

The produced epistemic hypergraph must make clear (i) which fields & trends
are to be found, (ii) what kind of relationships they entertain. In turn, the result-
ing taxonomy should prove consistent with the already-existing intersubjective
perception of the field, which will thus be the benchmark of our procedure.
Eventually, knowing the taxonomy at any given time enables us to describe the
evolution of the system; and as such achieve a reconstruction of the history of
the community on objective grounds.

The outline of the paper is as follows: after having presented the context and
introduced the formal framework (Sec. 1), we describe how to categorize epis-
temic communities in an hierarchically structured fashion using concept (Galois)
lattices (Sec. 2) and produce a manageable (reduced) lattice-based representation
of the whole knowledge community. We also adress their evolution: in particular,
field progress or decline, field scope enrichment or impoverishment, and field in-
teraction (merging or splitting) are defined. The method is eventually applied to
a dynamic case study (Sec. 3). Settled both in applied epistemology and sciento-
metrics, this approach would ultimately provide agents with processes enabling
them to know dynamically their community structure.

1 Formal framework

1.1 Context

For social epistemologists, an epistemic community is a group of scientists pro-
ducing knowledge and recognizing a given set of conceptual tools and repre-
sentations [9, 17] — the “paradigm,” according to Kuhn [24]. Several formal
frameworks and automated processes have been proposed to analyze knowledge
community structure and find groups of agents or documents related by common
notions or concerns, notably in knowledge discovery in databases (KDD) [20] and
scientometrics [6, 27], following the development of massive informational con-
tent (in particular scientific data). Yet, most approaches in community finding



are either based on social relationships only, with community extraction meth-
ods stemming from graph theory applied to social networks [37], or on semantic
similarity only, namely clustering methods applied to document databases where
each document is considered as a vector in a semantic space [33]. There have
been few attempts to link social and semantic aspects, although the various
characterizations of an epistemic community insist on its duality: a community
is on one side a group of agents who, on the other side, work on a given subset
of notions.

On the other hand, many different techniques have been proposed for produc-
ing categorical structures including, to cite a few, hierarchical clustering [21], Q-
analysis [1], formal concept analysis [40], blockmodeling [39], graph theory-based
techniques [31], neural networks [23]. Along with this profusion of community-
finding methods, often leaning towards AI-oriented clustering, an interesting
issue concerns the representation of communities in an ordered fashion. Here,
the notion of taxonomy is particularly relevant with respect to communities of
knowledge. Taxonomies are hierarchical structurations of categories (or ordered
set of taxons), useful in biology, cognitive psychology, as well as ethnography
and anthropology; and while they have initially been built using a subjective
approach, the focus has moved to formal and statistical methods [34].

However, taxonomy building itself is generally poorly investigated; arguably,
taxonomy evolution during time has been fairly neglected. Our intent here is thus
to address both topics: build a taxonomy of epistemic communities, then monitor
its evolution. At the same time, while taxonomies have long been represented
using tree-based structures, we wish to deal with sub-communities affiliated with
multiple communities; thus calling for lattice-based structures.

1.2 Epistemic communities and epistemic hypergraphs: definitions

Basically, we try to know (i) which agents share the same concerns and work
on the same notions, and (ii) which these concerns or notions are. Hence, our
definition of an epistemic community (EC) is simply characterized by common
knowledge concerns and should not necessarily be a social community:

Definition 1 (Epistemic community). Given an agent set S, the epistemic
community of S is the largest set of agents who use the notions which all agents
of S have in common.

Considering the epistemic community of an agent set extends it to the largest
community sharing all its notions. This concept is close to “structural equiva-
lence,” introduced in sociology by F. Lorrain and H. White [29]: ECs are groups
of agents related in an equivalent manner to some notions. We could also define
correspondingly an epistemic community as the largest set of notions commonly
used by agents who share a given notion set. We will at first focus on agent-based
ECs, keeping in mind that notion-based concepts are defined strictly equivalently
and in a dual manner.

Formally, we bind agents to notions with a binary relation R between the
whole agent set S and the whole notion set N. Here, R ⊆ S×N represents any



kind of link between an agent s and a notion n: in our case, the link corresponds
to the fact that s used n (e.g. in some article). Then, we define the “intent” of
an agent set S as the the set of notions used by every agent in S — it is the
set of elements of N R-related to every element of S. Similarly and dually, we
define the “extent” of a notion set N as the set of agents who use every notion
in N . We denote the intent of S and extent of N by S∧ and N? respectively,
thereby implicitly defining two operators:

Definition 2 (Intent and extent operators). The intent operator “∧” is
such that, ∀s ∈ S, ∀S ⊆ S,{

s∧ = {n ∈ N | sRn }
S∧ = {n ∈ N | ∀s ∈ S, sRn } (1)

and the extent operator “?” is such that ∀n ∈ N, ∀N ⊆ N,{
n? = { s ∈ S | sRn }
N? = { s ∈ S | ∀n ∈ N, sRn } (2)

By definition, we set (∅)∧ = N and (∅)? = S.

This formalism is traditional in Formal Concept Analysis (FCA) [41] and is a ro-
bust way of dealing with abstract notions in a philosophical sense, characterized
by their physical implementation (extent) and their internal content (intent).
Here, notions are properties of authors who use them (they are skills in scien-
tific fields, i.e. cognitive properties) and authors are loci of notions (notions are
implemented in authors).

Furthermore, the combination of “∧” and “?” yields a closure operator : for
a given S, S∧? is called the closure of S; we can say that “∧?” is:

(i) extensive: S ⊆ S∧? — the closure is never smaller;
(ii) idempotent ((S∧?)∧? = S∧?) — applying ∧? once or more does not change

the closure;
(iii) increasing (S ⊆ S′ ⇒ S∧? ⊆ S′∧?) — the closure of a larger set is larger.

Thus, applying “∧?” to S returns all the agents who use the same notions which
agents of S had in common. Briefly, ∧? yields the EC of any agent set: (S∧?,
S∧) is the epistemic community based on S.

Definition 3 (Closed couple). Given two subsets S ⊆ S and N ⊆ N, a couple
(S, N) is said to be closed if and only if N = S∧ and S = N?.

Subsequently, any closed couple is an epistemic community, which we can denote
unambiguously and indifferently by its agent set or its notion set. In FCA, such a
couple is classically called a “formal concept.” We may now introduce epistemic
hypergraphs:

Definition 4 (Hypergraph, epistemic hypergraph). A hypergraph H is a
couple (V,E) where V is a set of vertices and E a set of hyperedges connecting a
set of vertices. E is thus fundamentally a subset of P(V ), the power set of V . An
epistemic hypergraph is a hypergraph of ECs, (S, {S∧?|S ⊂ S}) with hyperedges
binding groups of agents belonging to a same EC.



Each hyperedge can be labelled with the notion set corresponding to the agent
set it binds, S∧. An epistemic hypergraph is basically the set of all ECs.1

2 Galois lattices: from relations to dynamic taxonomies

2.1 Taxonomies, lattices and epistemic hypergraphs

A relationship between agents and notions is thus sufficient to capture the whole
underlying epistemic hypergraph of a given scientific field, and as such it is yet
another clustering method. Is it also able to capture a meaningful structure?
There are several stylized facts we would like to rebuild, primarily the existence
of subfields and significant groups of agents working within those subfields. One
can consider epistemic hypergraphs from any two sets of objects and a given
relationship between them, yet there is no reason a priori why this should reveal
a remarkable structure.

Our main assumption is that there are fields of knowledge which can be
described by notion lists, and which are being implemented by sets of agents.
For instance, some scientists are linguists, and some among them deal with a
given aspect, say prosody; some other scientists deal with neuroscience, while a
few of them are interdisciplinary and use both notions. Moreover, these fields
are hierarchically organized: a general field can be divided into many subfields,
themselves possibly having subcategories or belonging to various general fields,
being multi-disciplinary or inter-disciplinary in that they respectively involve or
integrate two or more subfields [22].

To hierarchize the raw set of all ECs that makes the epistemic hypergraph,
we first provide a partial order between ECs:

Definition 5 (Subfield). An EC (S, S∧) is a subfield of the EC (S′, S′∧) if
its intent is larger (more precise), or equivalently if its extent is smaller:

(S, S∧) @ (S′, S′∧) ⇔ S ⊂ S′ (3)

We can thus render both generalization and specification of closed couples [41],
because (S, S∧) can be seen as a specification of (S′, S′∧) (larger notion set, less
agents) and conversely (S′, S′∧) is a “superfield” or a generalization of (S, S∧).
Now, the concept lattice, or Galois lattice [3] is exactly the ordered set of all
epistemic communities built from S, N and R:

Definition 6 (Galois lattice). The Galois lattice GS,N,R is the set of every
closed couple (S, N) ⊆ S ×N under relation R: GS,N,R = {(S∧?, S∧)|S ⊆ S},
partially ordered with @.

1 Note that all these properties are dual when considering an EC based on N , subset
of N, and “?∧” — for instance, an epistemic hypergraph could equivalently be based
on notions: (N, {N?∧|N ⊂ N}), with hyperedges binding notions of a same EC.
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Fig. 1. Creating a Galois lattice of 6 ECs (left) from a sample community (right),
involving agents s1, s2, s3, s4 and notions “linguistics” (Lng), “neuroscience”
(NS) and “prosody” (Prs). ECs are a pair (extent, intent) = (S, N) with S∧ = N ,
N? = S. An EC closer to the top is more general: the hierarchy reproduces the
generalization/specialization relationship induced by @.

Relevance of Galois lattices. Lattices in general replace efficiently and conve-
niently trees for describing such taxonomies — trees are the canonical (Aris-
totelian) approach for ordering categories, where sub-categories are child nodes
of their unique parent category, thus unable to deal with category overlap, or
weak at representing paradigmatic categories. Using GLs we represent ECs hi-
erarchically in a lattice-based taxonomy. More broadly, GLs are suitable for
ordering abstract categories relying on such a binary relation, and have been
therefore widely used in conceptual knowledge systems, formal concept classi-
fication, as well as mathematical social science [12, 14, 15, 30, 40]. GLs can also
be considered as hierarchically ordered epistemic hypergraphs — as such, GLs
are both a categorization tool and a taxonomy building method. A graphical
representation of a GL is drawn on Fig. 1.

GL relevance for our purpose results from the fact that (i) knowledge fields
and their corresponding agent sets are ECs, which are precisely what GLs consist
of, (ii) the GL natural partial order v reflects a generalization/specialization re-
lationship between fields and subfields and exhibits multidisciplinarity and inter-
disciplinarity. Assuming this organization of scientific communities, the justifica-
tion for this method will lie in the agreement between EC taxonomies extracted
using GLs and those explicitly given by domain experts.

2.2 Trimming the lattice

However, a serious caveat of GLs is that they may grow extremely large, with
significantly more than several thousands of ECs, even for few agents and no-
tions. GLs contain all ECs, and among those many do not correspond to an
existing or relevant field of knowledge: how to produce a useful and usable rep-
resentation? We should select relevant ECs from a possibly huge GL, while



excluding irrelevant ones. Formally, the new epistemic hypergraph that contains
only extracted ECs is still a partially-ordered set (with v), which overlays on
the lattice structure and enjoys the taxonomical properties we are interested in.
The resulting concise taxonomical description is called hereafter “partial epis-
temic hypergraph.” This selection process has so far been an underestimated
topic in the study of GLs: an important part of the effort has focused on com-
putation and representation [10, 15, 25], while few authors insist on the need for
semantic interpretations and approximation theories in order to cope with GL
combinatorial complexity [12, 35, 36].
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Fig. 2. From the original GL to a selected poset, or partial epistemic hypergraph.

Criteria. We need to design criteria for distinguishing relevant ECs. At first, we
would certainly keep largest ECs: if a set of notions corresponds to a field, its
extent should be of significant size [32]. Yet, some large ECs are too specific,
while small ECs close to the top are also likely to be relevant, as minority fields.
We thus suggest some selection properties: (i) agent set size, (ii) level (short-
est distance to the top), (iii) specificity (notion set size), (iv) sub-communities
(number of descendants). Then, we design several simple selection heuristics
attributing a score to each EC by combining these criteria, so that we only
keep the top scoring ECs: for instance, favoring (i) large ECs, (ii) close to the
top, (iii) unusually specific (i.e. featuring many notions with respect to what
the position in the lattice would suggest), (iv) close to the top and having few
descendants (possibily being heterodox ECs). We may not necessarily be able
to express all preferences through a unique heuristic. Therefore, the selection
process involves several heuristics: for instance one function could select large
communities, while another is best suited for minority communities. Fine tuning
these heuristics eventually requires active feedback from empirical data; yet in
any case, correct results with respect to the rebuilding task acknowledges the
validity of the choice.



Dealing with computational complexity. Practically, this pruning process can
be achieved in two ways: either (i) by computing the whole GL then select
a partial epistemic hypergraph, or (ii) by computing only relevant ECs. The
former solution is certainly the least efficient option; while the latter addresses
the theoretically exponential complexity by safely limiting the number of ECs to
be computed. Yet, doing so requires an incremental construction of the lattice,
which actually constrains strongly the choice of selection criteria. For instance,
one could suggest computing the upper part and its “valuable” descendance
— computing a fixed number of ECs, starting from the top, similarly to what
“iceberg lattices” achieve [35] — but this requires monotonic selection heuristics,
i.e. heuristics h respecting the lattice partial order: if (S, N) @ (S′, N ′), then
h(S, N) < h(S′, N ′).

On the other hand, we are interested in scientific field taxonomy rather than
monitoring a fixed and particular set of researchers. Therefore, considering a
statistically significant random sample of authors should yield a partial epistemic
hypergraph which faithfully accounts for the original thematic taxonomy. Here,
computing the whole lattice then prune it is a satisfying solution, as long as the
agent set is kept to a decent size. Besides, it is later possible to fill the surviving
ECs with authors who were initially excluded from the computation.

2.3 Taxonomy evolution

We would also like to be able to provide an history of the field that matches an
expert-based history, i.e. monitoring taxonomy evolution through partial epis-
temic hypergraph evolution, in a longitudinal study. This can be done by cap-
turing some patterns reflecting epistemic evolution: (i) progress or decline of a
field, (ii) enrichment or impoverishment of a field (reduction or extension of no-
tion set related to a field), and (iii) reunion or scission of fields (emergence or
disappearance of joint ECs made of several fields). In terms of changes between
successive partial epistemic hypergraphs, these patterns simply translate into a
variation in the population of a given EC. The interpretation of this population
change ultimately depends on the EC position in the partial epistemic hyper-
graph: according to whether (i) the change concerns a single EC, (ii) it occurs
for a subfield and (iii) this subfield is in fact a joint subfield. These patterns
describe epistemic evolution with an increasing precision — Fig. 3. More precise
patterns could naturally be proposed, yet these ones are sufficiently relevant for
our purpose.

3 Case study

3.1 Empirical protocol

We now apply this procedure to an empirical case study: we considered the
community of embryologists working on the model animal “zebrafish”, on the
period 1990–2003, covering what experts of the field call the major growth of this



(S ,N)

(S ,N)

growth

decrease

1(S ,N)

2

2

(S’,N’)

 ∩∩ ^

scission

merging

(S,N)

(S    S’,(S    S’) )

Fig. 3. Left: progress or decline of a given EC (S1, N), whose agent set is growing
(above) or decreasing (below). Right: emergence or disappearance of a joint
community based on two ECs, (S, N) and (S′, N ′). Disk radius represents agent
set size.

community, up to recent times. To describe the community evolution over several
periods of time, we use data telling us when an agent s uses a notion n. Our main
source of data is MedLine, a public bibliographical reference database maintained
by the US National Library of Medicine. We adopt weak linguistic assumptions
by assuming that a lemmatized term corresponds to a notion (lemmatization
consists in finding the root of a word, or term: for instance, “gener” for both
“generic” and “general”). We also restrict the dictionary to the 70 most used
and significant words in the community, selected with the help of our expert
in order to avoid rhetorical and neutral terms (“stop-words”). We attribute a
notion to an agent whenever a lemmatized word is found in the title or the
abstract of an article authored by the given agent.2

We divide the database into several time-slices, and build a series of relation
matrices aggregating all events for each period. Before doing so, we choose the
time-slice width (size of a period) and the time-step (increment of time between
two periods):

1. Time-slice width — We need a sufficiently wide time-slice to take into ac-
count minority communities, to get enough information for each author, and
smooth the data by reducing singularities. Yet we shall not merge several
periods of evolution into a single time-slice: this tradeoff must be empirically

2 This simplistic linguistic procedure could be easily improved by understanding terms
in their context — for example, distinguishing several meanings for “pattern” as
“pattern-1”, “pattern-2”, etc. Moreover, one could take into account simple semantic
relationships such as synonymy and hyperonymy/hyponymy. Synonymy could be
addressed by grouping several synonymic words under the same notion. Hyperonymic
relationships could be rendered by simple implications: if n is an hyperonym of ν,
then one could consider for instance that n should be added every time ν appears
(ν → n). In the lattice, ECs using ν would necessarily be subfields of ECs using n.
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adapted to the data, for instance by choosing to talk in terms of months,
years or decades.

2. Time-step — The time-step defines the pace of observation. Overlapping
time-slices are needed to catch developments covering the end of a period
and the beginning of the next one, so we have to choose a time-step strictly
shorter than the time-slice width.

We splitted the database in three periods: 1990-1995, 1994-1999 and 1998-
2003, i.e. a time-slice width of 6 years, with a time-step of 4 years — see Fig. 4.
To limit computation costs, we also considered for each period a random sam-
ple of 255 authors. Besides with a fixed number of authors we could compare
the relative importance of each field with respect to others within the evolving
taxonomy.

3.2 Rebuilding history

Few changes occured between the first and the second period, and between the
second and the third period: the second period is a transitory period between the
two extreme periods. This seems to indicate that a 4-year time-step is slightly
below the time-scale of the community, while 8 years can be considered a more
significant time-scale. We hence focus on two periods: the first one, 1990-1995,
and the third one, 1998-2003. The two corresponding partial epistemic hyper-
graphs are drawn on Fig. 5:

– First period (1990-1995), first partial epistemic hypergraph: {develop} and
{pattern} strongly structure the field: they are both large communities and
present in many subfields. Then, slightly to the right of the partial hyper-
graph, a large field is structured around brain3 and ventral along with dor-
sal. Excepting one agent, the terms spinal and cord form a community with
brain; this dependance suggests that the EC {spinal, cord} is necessarily
linked to the study of brain. Subfields of {brain} also involve ventral and
dorsal. Similarly, {brain, ventral} has a common subfield with {spinal, cord}.

3 We actually grouped brain, nerve, neural and neuron under this term.
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Fig. 5. Two partial epistemic hypergraphs for period 1990–1995 (top) and 1998–
2003 (bottom). Figures in parentheses indicate the number of agents per EC.
Lattices established from a sample of 255 agents (out of 1, 000 for the first
period vs. 9, 700 for the third one).



To the left, another set of ECs is structured around {homologous}, {mouse}
and {vertebrate}, and {human}.

– Third period (1998-2003), second partial epistemic hypergraph: We still ob-
serve a strong structuration around {develop} and {pattern}, suggesting that
the core topics of the field did not evolve. However, we notice the strong emer-
gence of three communities, {signal}, {pathway} and {growth}, along with a
new EC, {receptor}. These ECs form many joint subcommunities together,
indicating a convergence of interests.
Also, there is a slight decrease of {brain}. More interestingly, there is no joint
community anymore with {ventral} nor {dorsal}. The interest in {spinal
cord} has decreased too, in a larger proportion. Finally, {human} has grown
a lot, not {mouse}. These two communities are both linked to {homologous}
on one side, {vertebrate} on the other. While the importance of {homologous}
is roughly the same, the joint EC with {human} has increased a lot. The
same goes with {vertebrate}: this EC, which is almost stable in size, has
a significantly increased role with {mouse} and especially {human} (a new
EC {vertebrate, human} just appeared).

Inference of an history. We summarize in terms of dynamic patterns (Sec. 2.3):
some communities were stable (e.g. {pattern}, {develop}, {vertebrate, develop},
{homologous, mouse}), some enjoyed a burst of interest ({growth}, {signal},
{pathway}, {receptor}, {human}) or suffered less interest ({brain} and {spinal
cord}). Also, some ECs merged ({signal}, {pathway}, {receptor} and {growth}
altogether; and {human} both with {vertebrate} and {homologous}), some split-
ted ({ventral-dorsal} separated from {brain}). We did not see any strict enrich-
ment or impoverishment — even if merging and splitting can be interpreted as
such.

We can consequently suggest the following story:
(i) research on brain and spinal cord depreciated, weakened their link with

ventral/dorsal aspects (in particular the relationship between ventral as-
pects and the spinal cord);

(ii) the community started to enquire relationships between signal, pathway,
and receptors (all actually related to biochemical messaging), together with
growth (suggesting a messaging oriented towards growth processes), indi-
cating new very interrelated notions prototypical of an emerging field; and
finally

(iii) while mouse-related research is stable, there has been a significant stress
on human-related topics, together with a new relationship to the study
of homologous genes and vertebrates, underlining the increasing role of
{human} in these differential studies and their growing focus on human-
zebrafish comparisons (leading to a new “interdisciplinary” field).

Point (ii) entails more than the mere emergence of numerous joint subcom-
munities: most pairs of notions in the set {growth, pathway, receptor, signal} are
involved in a joint subfield. Put differently these notions form a clique of joint
communities, a pattern which may be interpreted as paradigm emergence (see
Fig. 5–bottom).



Comparison with real taxonomies. We compared these findings with empirical
taxonomical data, coming both from:

1. Expert feedback: Our expert, Nadine Peyriéras, confirms that points (i), (ii)
and (iii) in the previous paragraph are an accurate description of the field
evolution. For instance, according to her, the human genome sequencing in
the early 2000s [19] opened the path to zebrafish genome sequencing, which
made possible a systematic comparison between zebrafish and humans, and
consequently led to the development described in point (iii). In addition,
the existence of a subcommunity with brain, spinal cord and ventral but
not dorsal reminded her the initial curiosity around the ventral aspects of
the spinal cord study, due to the linking of the ventral spinal cord to the
mesoderm (notochord), i.e. the rest of the body.

2. Litterature: The only article comprehensively dealing with the history of
this field seems to be that of Grunwald & Eisen [16]. This paper presents a
detailed chronology of the major breakthroughs and steps of the field, from
the early beginnings in the late 1960s to the date of the article (2002). While
it is hard to infer the taxonomic evolution until the third period of our anal-
ysis, part of their investigation confirms some of our most salient patterns:
“Late 1990s to early 2000s: Mutations are cloned and several genes that af-
fect common processes are woven into molecular pathways” — here, point
(ii). Note that some other papers address and underline specific concerns of
the third period, such as the development of comparative studies [4, 11].

3. Conference proceedings: Finally, some insight could be gained from analyzing
the evolution of the session breakdown for the major conference of this com-
munity, “Zebrafish Development & Genetics” [8]. Topic distribution depends
on the set of contributions, which reflects the current community interests;
yet it may be uneasy for organizers to label sessions with a faithful and
comprehensive name — “organogenesis” for instance covers many diverse
subjects. Reviewing the proceedings roughly suggests that comparative and
sequencing-related studies are an emerging novelty starting in 1998, at the
beginning of the third period, which agrees with our analysis. On the con-
trary, the importance of issues related to the brain & the nervous system, as
well as signaling, seem to be constant between the first and the third period,
which diverges from our conclusions.

Note that the expert feedback here is obviously the most valuable, as it is
the most exhaustive and the most detailed as regards the evolving taxonomy.
The other sources of empirical validation are more subject to interpretation and
a more comprehensive empirical protocol would have to include a larger set of
experts, yielding more details as well as a more intersubjective viewpoint, thus
objective.

Conclusion

In this paper, we proposed a method for creating a meaningful taxonomy of any
knowledge community. After defining an epistemic community as the largest



group of agents using the same notions, we showed that GLs (concept lattices)
automatically arrange a community into hierarchic fields and subfields, render-
ing overlaps among epistemic communities, commonly called interdisciplinary
fields. Yet, since GLs organize the data but do not reduce it much (the set
of all ECs can possibly be huge, thus intractable), we introduced criteria dis-
criminating interesting ECs, therefore producing a partial epistemic hypergraph
which is a manageable representation of the community hierarchical structure.
A longitudinal study consequently made possible an historical description, by
capturing stylized facts related to epistemic evolution such as field progress, de-
cline and interaction (merging or splitting). We ultimately applied our method
to the subcommunity of embryologists working on the model animal “zebrafish.”
Even with imperfect data quality (mostly due to weak linguistic assumptions),
we successfully compared the results with expert-based taxonomies.

In other words, we designed a valid projection function from the low-level
of relations between agents and notions, to the high-level of epistemological de-
scriptions, thanks to GLs. So far, detection of this kind of community had been
investigated both (i) in computer science [18, 23, 31] where the main drawback
is the relevance for social science: clusters have an unclear connection with what
social scientists would call communities; and (ii) in sociology, which by con-
trast introduce hypotheses and tools proper to social networks [5, 13, 37] and
yield CMs more adequate to social group detection. Yet, most of these methods
produce hierarchically structured clusters which are in fact more or less dendro-
grams: agents cannot be part of many non-embedded, overlapping communities,
and are bound to belong to a lineage of increasing communities. This is easily
solved by using lattices. Additionally, these categories would have been hard to
detect using single-network-based methods, relying e.g. only on social relation-
ships: agents of a same EC are not necessarily socially linked — single-mode
data often implies massive information loss.

More generally, this kind of application of conceptual structures could be
helpful to historians of science especially when there are massive amounts of
data. The present study might be considered the first wholly non-subjective his-
torical analysis of the “zebrafish” community. Also, GLs may be used in at least
any semantic-community-finding case involving a relationship between agents
and semantic items. As stated by Cohendet et al. [7], “a representation of the or-
ganization as a community of communities, through a system of collective beliefs
(...), makes it possible to understand how a global order (organization) emerges
from diverging interests (individuals and communities).” In addition to episte-
mology, scientometrics and sociology, other fields of application and validation
include economics (companies and technologies), linguistics (words and contexts)
and history in general (urban centers and industrial patterns [38]). Having sig-
nificant results in many distinct fields would support the overall robustness of
GL-based compact taxonomy building.
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