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Abstract. Concept lattices built on noisy data tend to be large and
hence hard to interpret. We introduce several measures that can be used
in selecting relevant concepts and discuss how they can be combined
together. We study their performance in a series of experiments.

1 Introduction

Formal Concept Analysis (FCA) as a categorization method aims at grouping
objects described by common attributes. In this framework, a category is more
precisely defined as a maximal set of objects sharing a maximal set of attributes.
Such groupings are then gathered in a hierarchical, lattice-based structure which
straightforwardly exhibits various relationships between categories and their sub-
and super-categories. As such, this approach provides an ideal formalization of
categories in terms of concepts as they are traditionally defined philosophically,
i.e., concepts extensionally described by sets of entities and intensionally de-
scribed by attribute sets.

The taxonomical structure of a given domain is therefore frequently ex-
pected to be naturally revealed by applying FCA to an empirical description
of its objects and their attributes. However, in spite of these strong theoretical
foundations, the translation of empirical data into clean and relatively readable
structures remains a common issue. Indeed, FCA induces a potentially dread-
ful combinatorial complexity and the structures obtained even from small-sized
datasets can become prohibitively huge. In this respect, noise constitutes a pri-
mary factor of complication as it favors the existence of many similar but distinct
concepts, which may excessively inflate the lattice with superfluous information
to the cost of significantly impaired readability.

Hence, displaying interesting patterns while removing useless and cumber-
some information constitutes a crucial task when assuming a noisy dataset. Such
patterns are admittedly those which are or would be the only ones to be found
in an ideally clean (non-noisy) dataset. This issue has seemingly received little
attention in the FCA literature, apart from methods targeted at simplifying lat-
tices [1, 2, 5, 6, 10]. In this paper, we design noise filtering criteria to specifically
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account for the likeliness of a concept to exist because of noise rather than to
reflect essential features of the underlying taxonomy. To proceed, we essentially
aim at appraising the diverse efficacy of such indices on basic datasets altered
by simple noise effects.

The paper is organized as follows: in Sect. 2, we recall the principles and
notations of FCA. Section 3 introduces the various indices and their rationale,
while Sect. 4 describes their application on noisy contexts and comments the
corresponding results.

2 FCA Definitions and Related Work

Before proceeding, we briefly recall the FCA terminology [3]. Given a (formal)
context K = (G,M, I), where G is called a set of objects, M is called a set of
attributes, and the binary relation I ⊆ G×M specifies which objects have which
attributes, the derivation operators (·)I are defined for A ⊆ G and B ⊆ M as
follows:

AI = {m ∈M | ∀g ∈ A : gIm};

BI = {g ∈ G | ∀m ∈ B : gIm}.

In words, AI is the set of attributes common to all objects of A and BI is the
set of objects sharing all attributes of B.

If this does not result in ambiguity, (·)′ is used instead of (·)I . The double
application of (·)′ is a closure operator, i.e., (·)′′ is extensive, idempotent, and
monotonous. Therefore, sets A′′ and B′′ are said to be closed.

A (formal) concept of the context (G,M, I) is a pair (A,B), where A ⊆ G,
B ⊆ M , A = B′, and B = A′. In this case, we also have A = A′′ and B = B′′.
The set A is called the extent and B is called the intent of the concept (A,B).

A concept (A,B) is a subconcept of (C,D) if A ⊆ C (equivalently, D ⊆ B).
In this case, (C,D) is called a superconcept of (A,B). We write (A,B) ≤ (C,D)
and define the relations ≥, <, and > as usual. If (A,B) < (C,D) and there is
no (E,F ) such that (A,B) < (E,F ) < (C,D), then (A,B) is a lower neighbor
of (C,D) and (C,D) is an upper neighbor of (A,B); notation: (A,B) ≺ (C,D)
and (C,D) � (A,B).

The set of all concepts ordered by≤ forms a lattice, which is denoted by B(K)
and called the concept lattice of the context K. The relation ≺ defines edges in
the covering graph of B(K). The meet and join in the lattice are denoted by ∧
and ∨, respectively.

3 Indices for Concept Selection

3.1 Stability

The stability index describes the proportion of subsets of objects of a given
concept whose closure is equal to the intent of this concept [6]. In other words,
it is meant to capture how much a concept intent depends on particular objects
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of the extent: should some objects be removed from the concept extent, would
the concept intent remain the same? In an extensional formulation, the index
specifies how much a concept extent depends on intent attributes.

We thus distinguish between intensional and extensional stability indices σi

and σe:

σi(A,B) =
|{C ⊆ A | C ′ = B}|

2|A|

σe(A,B) =
|{D ⊆ B | D′ = A}|

2|B|

The intent of a concept with a high intensional stability index would be
likely to exist even if we ignore several of its objects: it does not disappear if
the intent of some of its objects is modified, e.g., if these objects lose some of
the properties of this concept. Put differently, concepts relying on noisy objects
and, therefore, not typical of a realistic category, are more likely to be unstable.
Similarly, extensional stability helps isolating concepts that appear because of
noisy attributes.

Given the covering graph of a concept lattice, computing stability for all
concepts can be done using the algorithm presented in [9]. This algorithm is
essentially quadratic in the number of concepts in the lattice, which may be pro-
hibitively expensive for large lattices. On the other hand, this algorithm needs a
lattice as input, and generation of lattices for very large datasets may be imprac-
tical, anyway. Hence, it would be useful to develop an algorithm that generates
only stable concepts directly from the input context (perhaps, giving up on the
exact computation of stability and computing only approximate estimates).

Below, we mainly rely on intensional stability, which we denote by σ for the
sake of clarity.

3.2 Concept Probability

A concept that covers fewer objects is normally less intensionally stable than
a concept covering more objects. Still, these rather specific concepts can corre-
spond to interesting associations that should not be ignored in the analysis. To
give such specific concepts a chance of surviving the stability test, we need to
normalize the stability index. To this end, we introduce the notion of concept
probability. The idea is that if a concept has low probability, but is still observed
in the data, it may reflect an interesting dependency and should be taken into
account.

The relation between the presence of some patterns and some simple fea-
tures of 01-matrices has received some attention in the literature, mainly by
appraising how some patterns could be artifactual with respect to a particular a
priori knowledge on the structure of such matrices. These studies focus in par-
ticular on the effect of matrix marginals—i.e., the distributions of sums of rows
and columns—on patterns. For instance, the so-called configuration model of
[8] assumes a null-model of random matrices conserving only original marginals;
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then, estimates the probability of some statistical features, generally related to
the topology of the matrix interpreted as the adjacency matrix of a graph. Closer
to FCA, [4] later proposed to estimate whether frequent itemsets could be due to
chance by, again, relating their presence to marginals: patterns are subsequently
said to be artifactual if they are found in comparable proportions in the original
data and its randomized version.

The notion of concept probability essentially follows a relatively similar line
of reasoning. For m ∈ M , denote by pm the probability of an arbitrary object
having the attribute m. For B ⊆ M , define pB , the probability of an arbitrary
object having all attributes from B, by

pB =
∏

m∈B

pm,

thus assuming the mutual independence of attributes. By denoting n = |G|, we
obtain the following formula for the probability of B being closed:

p(B = B′′) =
n∑

k=0

p(|B′| = k,B = B′′) =

=
n∑

k=0

(n
k

)
pk

B(1− pB)n−k
∏

m 6∈B

(1− pk
m)


To see the reasoning behind the formula, note that, for |B′| = k and B = B′′,

we need that

1. There are k objects that have all attributes from B;
2. Each of the other n− k objects does not have at least one attribute from B;
3. No attribute outside B belongs to all the k objects.

There are
(
n
k

)
variants to choose k objects. The probability that each of

the chosen k objects has all attributes from B is pk
B , and the probability that

each of the other n − k objects does not have at least one attribute from B
is (1 − pB)n−k. The probability that not all of the k chosen objects have an
attribute m is (1−pk

m); hence the probability that none of the attributes outside
B belongs to all the k objects is

∏
m6∈B(1− pk

m). Therefore, the joint probability
of |B′| = k and B = B′′ is(

n

k

)
pk

B(1− pB)n−k
∏

m 6∈B

(1− pk
m).

By summing over k, we obtain the complete formula for the probability of
an attribute set B being closed, which is given above.

Again, one can regard this as “intensional probability” of a concept and
define “extensional probability” dually (as the probability of an object subset
being closed).
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Fig. 1. Separation index s(A,B) corresponds to the ratio between the green
central area |A| × |B| and the total area covered by intents of every object of A
and extents of every attribute of B.

It can be easily seen that it is possible to compute
(

n
k+1

)
pk+1

B (1− pB)n−(k+1)

from
(
n
k

)
pk

B(1 − pB)n−k using a constant number of multiplication operations,
while

∏
m6∈B(1 − pk

m) requires O(|G||M |) multiplications. Thus, computing the
(intensional) probability of one concept involves O(|G|2|M |) multiplication op-
erations.

3.3 Separation

The separation index is meant to describe how well a concept sorts out the ob-
jects it covers from other objects and, jointly, how well it sorts out the attributes
it covers from other attributes of the context.3

Put differently, it indicates the significance of the difference between the
objects covered by a given concept from other objects and, at the same time,
between its attributes and other attributes.

To do so, the separation index s is defined as the ratio between the area
covered in the context by a concept (A,B) and the total area covered by its
objects and attributes (see Fig. 1 for an illustration):

s(A,B) =
|A||B|∑

g∈A

|g′|+
∑
m∈B

|m′| − |A||B|

Obviously, s(A,B) can be computed in O(|G|+ |M |) time (assuming that object
intents and attribute extents are pre-computed).

3 A similar motivation is behind “relevant bi-sets” described in [2], but our approach
is different.
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4 Reconstruction of Noisy Datasets

4.1 Noisy Contexts

We understand noise in all generality as a measurement discrepancy between
an empirical (real) setting and what a given dataset says about it. Empirical
data may be noisy for various reasons: it can be due for instance to a lack
of precision in collecting or building the dataset by mistakenly adding extra
attributes to some objects or omitting some objects in describing the extent
covered by some attribute. Noise can also be understood as exceptions to a rule,
when attempting to exhibit clear-cut joint object-attribute categories, i.e., noisy
objects or attributes. We therefore distinguish two different types of noise:

(Type I) — either by altering every cell value in the context with some prob-
ability;

(Type II) — or by adding to the original context a given number or proportion
of completely random objects or attributes.

4.2 Example Contexts

We used four simple contexts with rather basic structures. This includes a chain-
based lattice (300 objects, 6 attributes), an antichain-based lattice (300 objects,
12 attributes), and two more elaborate structures respectively built upon 300 and
400 objects and 6 and 4 attributes. The corresponding lattices are represented
in Fig. 2.

Every concept of these lattices contains many identical objects, often char-
acterized by only a handful of attributes, sometimes, only one attribute.

In each of these contexts, we uniformly introduce noise (type I or type II),
which leads to the appearance of many new concepts, and then try to find the
concepts of the original context among the concepts of the noisy context using
various combinations of the indices discussed above.

4.3 Results

Context 1—Chain Lattice. Stability is relatively successful at dealing with
type I-noise, with only a few discrepancies with the original lattice and up to
20% of perturbation (correctly selecting the original six intents among 56 intents
of the noisy lattice)—see Fig. 3. On the contrary, separation indices are much
less effective, even with only 2% of noise.

The best result (not shown in Fig. 3) is achieved with the combination of
intensional stability and probability σ(A,B)−k ·p(B = B′′). With appropriately
chosen value of k ≥ 0, it makes it possible to completely restore the original
structure even with 20% of noise (in this case, we had k = 0.0005).

The relevance of stability is confirmed when examining contexts altered with
type II-noise, both when random objects or random attributes are introduced
(using intensional stability in the former case and extensional stability in the



7

Context 1 (chain) Context 2 (anti-chain)

Context 3 Context 4

Fig. 2. Original contexts

latter case). This should not come as a surprise, since intensional (extensional)
stability is defined specifically to address the case of noisy objects (attributes)
added to the otherwise clean context (that is, exactly type II-noise).

Context 2—Antichain Lattice. As regards type-I noise, when the noise is
relatively limited (10%, which yields 324 concepts), separation is quite equivalent
to stability: separation produces more faithful lattices, while stability yields more
readable structures. When using thresholds on both stability and separation, the
lattice exhibits exactly the same structure as the original. At 20% of noise (786
concepts), this does not work anymore. Yet, stability normalized by probability
remarkably yields the original structure again (see Fig. 4).
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Context 1, With Noise

type I type II

separation s stability σ

2% 10% 20%

Fig. 3. Noisy instances of context 1 (chain lattice) with various filtering strate-
gies. Three first lattices, from left to right: type-I noise using respectively 2, 10
and 20% noise, together with separation (left) or stability (middle lattices). The
ideal result (not shown in the picture) is achieved by the combination of stability
and probability σ(A,B)− k · p(B = B′′) . Rightmost lattice: type-II noise using
20% object addition and stability-based pruning.

As regards type-II noise, as with the chain lattice case, stability is robust,
even with 40% of noise (268 concepts in the noisy lattice).

Context 3. This context features several concepts which are either super- or
sub-categories in distinct parts of the lattice. Context 3 therefore significantly
diverges from the previous prototypical cases.

As regards type I-noise, stability performs relatively well: it perfectly yields
the original structure at 5% noise (36 concepts) and remains close to this bench-
mark at 10% (52 concepts) and even 20% (63 concepts) noise (see Fig. 5, top).

On the other hand, separation yields comparatively unconvincing results,
from just 5% of noise (see Fig. 5, middle). Combining stability with separation
and probability allows us to achieve better results (see Fig. 5, bottom).

As usual, stability works just fine for type II-noise, even with 40% of noise.

Context 4. This lattice eventually offers a mix of sub- and super-concepts
intertwined in a somewhat balanced manner. Stability, again, is the only criterion
that yields the exact original structure. Separation, when used alone or in various
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Context 2, With Noise

type I
stability σ

10%

separation s

stability and
separation σ · s 20%

stability,
separation, and

probability
σ + k1 · s − k2 · p

type II stability σ 40%

Fig. 4. Noisy instances of context 2 (antichain lattice) with various filtering
strategies. Four top lattices, from top to bottom: type I noise using respectively
10, 10, 20, and 20% noise; together with stability, separation, the product of
stability and separation, and the sum of weighted stability, separation, and
probability. Bottommost lattice: type II-noise using 40% object addition and
stability-based pruning.
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Context 3, With Noise of Type I

stability σ

5% 10%

separation s

5% 20%

σ + k1 · s− k2 · p
10% 20%

Fig. 5. Instances of context 3 with type I-noise and various filtering strategies.
Top lattices: filtering lattices with contexts at 5% and 10% noise, using stability.
Middle lattices: filtering with separation with 5% and 20% noise level. Bottom
lattices: filtering with a combination of the three criteria with 10% and 20%
noise level.
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combinations with stability, produces a slightly different structure, as shown in
Fig. 6 (this applies, e.g., when using the sum or the product of σ and s).

Context 4, With Noise of Type I

stability σ separation s

10%

Fig. 6. Instances of context 4 with type I-noise at 10%, filtering with stability
(left) or separation (right).

Again, type II noise can be perfectly filtered out by stability alone.

4.4 Conclusion

On the whole, stability is remarkably effective at sorting out type II-noise. Since
the most stable concepts are usually those which are the least affected by in-
dividual objects or attributes, the success of this criterion should be relatively
unsurprising. Still, stability proves to be significantly helpful for type I-noise as
well. Unlike type II-noise, type I-noise might make some original concepts dis-
appear (in which case, none of the methods described in the paper is sufficient
to reconstruct such concepts). However, the probability for a stable concept to
disappear or become significantly less stable because of type I-noise is quite
low, especially if the noise is relatively limited.4 Additional experiments could
help characterize this probability more precisely, thus explaining why stability
behaves well even for type I-noise.

Separation is founded on a different rationale and, therefore, can be used only
as an auxiliary criterion when dealing with noise. A notable exception is given by
anti-chain-like parts of lattices, which can be efficiently reconstructed with sep-
aration. In other cases, it is less effective than stability. One of its shortcomings
4 We are grateful to the anonymous reviewer for this remark.
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is that concepts with similar extents and intents tend to have similar separation
indices. As a result, separation-based filtering prunes groups of similar concepts
(Fig. 4). It seems promising to combine separation and stability, as they reduce
each other’s drawbacks.

Similarly, probability is not a self-sufficient criterion for filtering noise. Low
or high probability of a concept does not say much of its importance. It can only
correct other indices, serving a normalizing measure for stability or separation.
It seems that the most promising combination is σ+k1 ·s−k2 ·p, where k2 < 0.2.
Such criterion seems able to reconstruct the original structure where stability
and separation alone are not sufficient. Learning appropriate values for k1 and
k2 can be done separately for different datasets. It remains to study the best
ways to automatically learn these coefficients.

A next step would consist in validating these approaches on empirical data
and theoretical interpretation of the performance of various combinations of the
indices on different structures. It would also be interesting to see how the indices
behave when noise is introduced in a non-uniform way. Automated learning of the
best performing combinations (e.g., with evolutionary programming) is another
research direction. This would most likely require defining a distance between
two lattices, so as to be able to precisely evaluate the quality of reconstructing
original lattices.
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