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Abstract

Social complex system modeling is at the core of a recent interdisciplinary effort,
in which statistical physics has been playing a notable role; yet, the unfrequent val-
idation of behavioral hypotheses possibly leads to normative rather than descrip-
tive models, plausibly less appealing to social scientists. An epistemological insight
and hindsight on this whole program is proposed, emphasizing a strong empirical
methodology which extends to low-level agent-based dynamics. Special attention is
given to the recent interest in knowledge diffusion models.
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Understanding how knowledge is collectively elaborated and diffused entails a
novel perspective on social epistemology and social cognition, in which the
modeling of underlying networks strongly relies on a fine apprehension of
knowledge-based interactions at the level of agents — with respect both to
the agent behavior and to the context of this behavior, i.e. the social net-
work itself. As recent advances in computing capabilities and electronic data
availability for several social systems (scientists, webloggers, online customers
etc.) made possible a wide range of empirical validation experiments, these
issues have known a renewed interest within an interdisciplinary effort aiming
at modeling “social complex systems”, in which statistical physics has been
playing a notable role, along with disciplines such as mathematical sociology
and computer science, relying altogether extensively on graph theory.

Specifically, this research program is addressing a wide range of phenomena
[for a review see 7], including the morphogenesis and structure of interaction
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networks and communities studied at an aggregated level [12, 16, 22, 25, 27], to
more local processes, such as individuals adopting opinions in so-called recom-
mendation and influence networks [6, 14, 19, 21], or actors trying to establish
common decisions in epistemic communities [2, 5, 17, 28]. Overall however, the
behavioral hypotheses driving these models, even sociologically, cognitively or
anthropologically credible, are often mathematical abstractions whose empir-
ical measurement and justification seem to be rather occasional. My aim here
is to provide an epistemological insight and hindsight on this whole program,
by insisting on a strong empirical methodology concerning both higher-level
phenomena and lower-level agent-based interactions. I shall first briefly recall
and detail some goals and methods of (social) complex system modeling, then
focus on the renewed interest in knowledge diffusion models.

1 Social complex system modeling

Epistemological approach. Recent approaches in social complex system
modeling have been massively calling for social network- and agent-based mod-
els to appraise various kinds of stylized facts; including, to cite a few, char-
acteristics of the connectivity of agents among their peers [22, 27], diffusion
velocity of some knowledge within a social group [6], structure of communities
[12, 25, 32], etc. These issues relate more broadly to the question of recon-
struction: after pointing out and observing some relevant stylized facts for a
given system, the aim is traditionally to propose a model which either rebuilds,
explains and/or possibly predicts these facts. If the model is solid enough, one
could even hope to reveal new and potentially counter-intuitive stylized facts
that were not initially observed.

In social science, scientists are using more and more frequently methods of
social network analysis (SNA) to infer and reproduce “high-level” phenomena
which would traditionally have undergone a strictly high-level description:
for instance qualifying the cohesion of a community, finding the roots of a
crisis, explaining how roles are distributed, etc. By doing so, they are clearly
exhibiting a formal relationship between traditional sociological descriptions
and the more abstract structure of an underlying model, based on a graph
binding nodes symbolizing agents and interactions — they reconstruct the
“social structure” [11], benchmarked against already-established descriptions
— the benefit being often that low-level information is easier to collect, more
practical to observe and/or entails more robust descriptions [3].

Reconstruction and simulation. In general, this kind of reconstruction is
a reverse problem consisting in successfully involving a lower level of agents
and agent-based interactions in order to rebuild some descriptions concern-
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Fig. 1. Reconstructing high-level descriptions H and dynamics ηe from low-level
states L and dynamics λ, through a mapping P (see [24, 30] for comprehensive
discussions on this kind of diagrams).

ing either this lower level itself, or a higher level of macroscopic descriptions
(communities, global structures). In formal terms, given some kind of high-
level phenomena to be modeled “H”, and an empirical dynamics on them, ηe,
agent-based models usually rely on distinct, interacting objects at a level “L”
animated by some dynamics λ. 1 For a given state on objects L, a correspond-
ing interpretation in terms of “classical” observables H is provided; let us call
this transformation P , such that P (L) = H. Subsequently, a modeler would
propose a dynamics λ on L such that the result matches the original dynam-
ics of H: P ◦ λ(L) = ηe(H). This should eventually provide a commutative
diagram, which is familiar in dynamical systems study [24, 30]: P ◦λ = ηe ◦P .

Considering the SNA example again, suppose that H describes the community
structure within a social group while L denotes the social network made of
agents, links, and possibly individual properties. Some appropriate commu-
nity finding algorithm can provide P by matching L with H [9, 10, 12, 25, 32].
The modeler would then try to design λ by describing a network morphogen-
esis mechanism (for instance link additions based on agent preferences) such
that, through P , the model eventually reproduces ηe. In turn, the focus and
expectations of the corresponding models vary greatly: some aim at reproduc-
ing either actual system states, or only a few statistical parameters (e.g. the
exact distribution of a given variable, the same type of law, just some sort of
power-law tail), functions which simply exhibit the same behavior, or even the
mere existence of some class of attractors (equilibrium, structural robustness).

2 Empirical benchmarking

The success of the reconstruction endeavor depends on the capacity of “P ◦λ”
to rebuild ηe, which must be appraised with respect to an empirical benchmark

1 Apart from agent-based models — in general, outside the “complex system” en-
terprise — L often corresponds directly to H, in which case P = Id.
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— even a rough one. This argument remains valid whether the underlying
model is simulation-based or purely analytical. Typically, one already has ηe

— under the form of a series of empirical measurements, or at least as a
well-established theory; that is, a more or less stylized ηe. Two attitudes are
available:

(i) Either rebuild ηe by proposing a sufficiently valid λ, in which case the
model could be used to explain ηe from a different perspective (agent-
based, obviously), i.e. to suggest that some stylized fact is “nothing but”
due to the systemic integration of a particular kind of agent behavior.
Then, the usefulness of the reconstruction stems from its ability to pre-
dict the future behavior of the whole system, or to suggest that some
effect could be deleted by acting on λ in a certain way (going towards
normative models).

(ii) Or find a new, unexpected behavior on H: the η derived from P ◦ λ has
some properties which were not known beforehand in ηe, yet happen to
be empirically correct.

At this point, by choosing the ontology of the lower-level L the modeler should
ensure that he also has an empirically valid mapping P . 2

Realistic models. What are the responsabilities of each of those two atti-
tudes? In the first case “(i)”, while it is already a great achievement to sub-
stantiate and re-discover the stylized facts from another viewpoint, it is also
pivotal to check if λ is realistic rather than alleged. Otherwise, the agent-based
approach might turn to be considered slightly superfluous: it could indeed be
argued that η could be modeled directly without going through a possibly
unchecked λ.

In practice however, this empirical endeavor on λ seems to be unsystematic.
Many morphogenesis models have attempted to reproduce, for instance, the
abnormally high clustering coefficient of some collaborative social networks
(such as scientists [4, 22], movie actors [8] and corporate board members [23])
by using elaborated mechanisms based on dyadic interactions and subsequent
addition of dyadic links. In contrast, real-world situations appear to feature
n-adic interactions (article writing, simultaneous co-appearance in boards or
movies) which correspond, in a classical graph, to clique additions. Some re-

2 For instance, as suggested above, community-finding methods are designed to
match a community structure H with a social-network-based description L. In this
area of research, the “karate-club” example [12] is a classical empirical benchmark of
P : given an already-known community structure of a given group of individuals, rel-
evant for social scientists, for a given a priori definition of what a community should
be, is a candidate algorithm able to find the same structure? Once this is checked,
would that algorithm in turn reveal new, a priori unsuspected communities?
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cent models using very basic n-adic interaction mechanisms appear to rebuild
straightforwardly many statistical parameters such as a high clustering coef-
ficient and realistic degree distributions [16, 28, 29, analytical proof for the
general case in [15]] — which also suggest that hypergraphs are better-suited
than graphs to model social network morphogenesis in such case, thus induc-
ing a new design of L. More broadly, what would be the reach of dyadic-
interaction-based models when their apparent high-level success is based on
dubious low-level behavioral assumptions?

A questionable λ could thus impair the empirical value of the model, whereas
a modest and simplistic yet faithful λ could be preferred. In other terms,
λ is certainly an approximation, as with any model, but what λ explicitly
describes should be valid, even if some part of reality is omitted. I would here
suggest that, even before solving or running a model, λ should be designed in
accordance with a strong program of empirical validation — this would allow
descriptive models instead of normative models. 3

In the second case, “(ii)”, this skeptic attitude is even more crucial: one would
like to avoid that the system dynamics η induced by P ◦ λ correctly matches
an empirical ηe but does so only for this very ηe, whereas new, unexpected
properties of η are incorrect. It would therefore be worth checking the validity
of both λ and the new η. Corresponding simulations and analytical solutions
might otherwise turn to have limited benefits, or, repeat what one already
knows (that is, ηe) with no further generalizing power.

A last attention should be paid to model stability with respect to its hy-
potheses — even realistic. Put differently, would a model exhibit a continuous
behavior with respect to continous modifications in the hypotheses, which are
themselves necessarily stylized to some extent? For instance, the celebrated
Barabasi-Albert model of network formation [1] induces a power-law distribu-
tion of degrees when nodes join the system at a constant rate, respecting a
linear preferential attachment behavior, that is, a preference to attach to other
nodes proportionally to their degree. In the real world however, this behavior
has been later measured to be slightly sub- or super-linear in many cases [2];
but even a slight discrepancy seems to bear crucial effects for the resulting
degree distribution [20].

3 This stance should remain valid even for very stylized approaches and hypotheses:
for instance, it is clearly wise for a model to show that the system behavior could
drastically change for a certain critical level of a given quantity. In turn, it might be
useful to assess the empirical meaning of this critical value: for a stylized parameter,
how does a given value translate concretely? Can it even be reached?
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3 The case of knowledge diffusion models

The question of appraising λ becomes critical when designing diffusion and
influence models, since such phenomena intimately intertwine agent behavior
and structural effects. More broadly, it is now widely accepted that the under-
lying network structure can significantly impact social system behavior, par-
ticularly knowledge diffusion [5, 31, 34]: “It is as unthinkable to study diffusion
without some knowledge of the social structures in which potential adopters
are located as it is to study blood circulation without adequate knowledge of
the structure of veins and arteries” (Katz in [18], cited in [6]). In line with the
previous arguments, even when assuming that the network structure is under-
stood, again, an empirical stance should nonetheless be adopted to appraise
agent-based transmission mechanisms. 4 Yet, as Leskovic, Adamic and Huber-
man [21] put it, “[while former] models address the question of maximizing
the spread of influence in a network, they are based on assumed rather than
measured influence effects.”

Estimating behaviors in diffusion models. Agent-based knowledge dif-
fusion models have been mainly introduced by Granovetter and his threshold
model [13] at the end of the 1970s. In this model, individuals are subject
to the influence of their social network neighbors; an agent is supposed to
adopt a given cultural item if a certain proportion of his neighbors also have
it (the “threshold”). Distinct kinds of agents could be identified, with distinct
threshold values. Improvements focus on methods for weighting and counting
the (non-linear) influence of neighbors — a feature not unfamiliar to formal
neural network models. Cascade models, on the other hand, assume the exis-
tence of a given probability for each agent to believe each of his neighbors [19];
this mechanism is also close to a class of models stemming from biological epi-
demiology, based on SIS models (“susceptible-infected-susceptible”) [26, 34],
for which several qualitative modifications are conceivable. Additionally some
more recent models, linked to economics and cultural anthropology, involve the
exchange of knowledge items or skills among former and possibly new neigh-
bors [5, 29]; cultural “contamination” stems here from successive interactions
of agents. Note that in contrast to above models, transmission of multiple

4 Indeed, knowledge diffusion can be a slow dynamics process, in that it can possibly
occur at a timescale comparable to that of the evolution of the social network itself,
it could be key to take into account social network morphogenesis in coevolution
with knowledge transmission mechanisms, especially if the latter have an impact
on the former (this should be particularly true for scientific ideas for instance,
rather than for rumors, which seem to diffuse at a more rapid pace than friendship
links). Clearly, in such settings asymptotic behaviors could be less informative than
expected.
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knowledge items is considered in a parallel yet non-independent manner. 5

Are these mechanisms realistic for some real-world situation? For the thresh-
old model for instance, there have already been qualitative and roughly quan-
titative estimations within some particular groups & situations [31], which
provided an extremely valuable insight on key influence phenomena: existence
of classes of agents with particular behaviors, estimations of threshold values
for each class, inter alia. Yet, while all above-mentioned influence mechanisms
sound intuitive and credible, even reasonably close to what social psychology
or social epistemology could qualitatively suggest, they are plausibly contra-
dictory one with another, and would thus not be relevant for all a general
purpose. More to the point, a recent attempt at measuring the influence of
neighbor recommendations for buying some products [21] reveals a decreasing
adoption probability with respect to received influence. Such result appears
to be inconsistent with existing influence models, unless one assumes a to-
tally heterogeneous agent behavior — in which case it is unclear whether the
data would allow to fit distinct adoption thresholds or probabilities for each
pair of agents. New empirically consistent influence mechanisms are certainly
required.

Finally, most models bear the underlying assumption that an individual is
permanently under the influence of all his neighbors, friends, colleagues: so-
cial network connections are considered permanently active. While this fea-
ture is likely to be verified in neural networks and computer networks, in
contrast, social networks are structures which simply represent past acquain-
tances, which could potentially induce future interactions: as Douglas White
underlines, “[o]ne way of using the coding of networks is to regard them as the
precipitates of past behavioral interactions” [33]. As such, the social network
should be seen as a framework wherein social interactions may take place: for
any given period, actual dyadic interactions within the system consist only of
a subset of links present in the social network.

Concluding remarks. Empirical tests could wisely be suggested to come be-
fore any modeling attempt: modeled dynamics of both higher and lower levels
should therefore adopt a strong discipline of empirical validation and realis-
tic design, especially concerning λ. Otherwise, we could be likely to achieve
appealing normative models, obviously useful in some settings, such as orga-
nizational optimization, but rather seldom sought by social scientists.

5 More comprehensive typologies of influence models are presented in [14, 31].
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