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General introduction

Agents producing, manipulating, exchanging knowledge are forming as a whole
a socio-semantic complex system: a complex system made of agents who work on
and are influenced by semantic content, by flows of information in which they are
fully immerged but, at the same time, on which they can have an impact and leave
their footprints. Social psychologists and epistemologists, inter alia, have already a
long history in studying the properties of such knowledge communities. Yet, the
massive availability of informational content and the potential for extensive inter-
activity has made the focus slip from single “groups of knowledge” to the entire
“society of knowledge”. Simultaneously, the change in scale has called for the use
of new methods, as well as the characterization of new phenomena, with knowl-
edge being distributed and appraised on a more horizontal basis — in a networked
fashion. On the other hand, many different “sub-societies” of knowledge co-exist,
possibly overlapping and interwoven, although usually easily distinguished by
their means, methods, and people.

Reconstruction issues Therefore, the research community has taken a renewed
and unprecedented interest in studying these communities, in both a theoretical
and a practical perspective:

• theoretically, it conveys the hope of naturalizing further social sciences.

• practically, it entails several potential applications — as regards research pol-
icy in particular, since scientists themselves form a knowledge community;
but also as a means for political planning, innovation diffusion improve-
ment, to cite a few.

The present thesis lies within the framework of this research program. Specifi-
cally, we aim to know and be able to model the behavior and the dynamics of such
knowledge communities. Alongside, we address more broadly the question of re-
construction in social science, and notably the reconstruction of the evolution of a
social complex system. Reconstruction is a reverse problem consisting fundamen-
tally in successfully reproducing several stylized facts observed in the original empirical
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10 General introduction

system. To this end, we distinguish the lower level of microscopic objects (includ-
ing agents, agent-based interactions, etc.), and the higher level of macroscopic de-
scriptions (communities, global structures). Thus, we wish to know whether it is
possible to:

(i) deduce high-level observations of such a system from strictly low-level phe-
nomena; and

(ii) reconstruct the evolution of high-level observations from the dynamics of
lower-level objects.

For instance, social scientists are using more and more frequently social net-
work analysis to infer high-level phenomena which would have traditionally un-
dergone a strictly high-level description: qualifying the cohesion of a community,
finding the roots of a crisis, explaining how roles are distributed, etc. By doing
so, they are clearly carrying an analysis related to the first issue, “(i)”: they exhibit
a formal relationship between higher and lower level objects — they reconstruct
the “social structure” (Freeman, 1989), benchmarked against classically proven
high-level descriptions. In this respect they make the assumption that the chosen
lower level (for instance a social network) yields enough information about the
phenomenon; the benefit being often that low-level information is easier to collect
and entails more robust descriptions. In formal terms, the first issue is equivalent
to the following question: given a high-level phenomenon H , and low-level ob-
jects L, is there a P such that P (L) = H , for any empirically valid pair L and
H? — then, how to find it? This approach must be accurate in an evolutionary
framework as well: given empirical dynamics λe and ηe on L and H respectively,
such that for any time t: {

λe(Lt) = Lt+∆t

ηe(Ht) = Ht+∆t
(1)

we must find a P such that:
P ◦ λe = ηe ◦ P (2)

In other words, we must have P (Lt+∆t) = Ht+∆t: it must be possible to describe
the final observation on H from the evolution of L. The reconstruction scheme is
detailed on Fig. 1, the commutative diagram in particular is encountered in the
context of dynamical systems — see (Rueger, 2000) and references herein, and (?;
Turner & Stepney, 2005).

Thereafter, once P is defined, the second issue, “(ii)”, is to show that a low-level
dynamics enables the reconstruction of the higher level dynamics. This approach
is generally a traditional problem of modeling, although in our framework we
insist on the constraint that low-level objects, not high-level descriptions, play a
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Figure 1: The reconstruction problem comes to find (i) a valid P (the projection P
from L onto H is valid if, knowing the empirical dynamics ηe and λe, the above
diagram commutes, i.e. P ◦ λe = ηe ◦ P ) and (ii) a satisfying λ (i.e. such that P ◦
λ = P ◦ λe). See (Rueger, 2000; ?) for comprehensive discussions on this kind of
diagrams.

central role (Bonabeau, 2002). Thus, the second issue comes to find a dynamics λ

such that it correctly reproduces the empirical high-level dynamics ηe, through
P . As such, the model objectives are restricted to rebuilding high-level phenom-
ena. Indeed, the point is not necessarily to find a dynamics λ yielding empirically
valid low-level phenomena (i.e. such that we have λ(Lt) = Lt+∆t), but simply
to find λ such that the desired high-level objects are correctly described (i.e. only
P ◦ λ(Lt) = Ht+∆t must hold). Thus, the fact that λ 6= λe or that Lt+∆t 6= λ(Lt) is
not problematic, as long as P ◦ λ = P ◦ λe: λ needs not be a model of λe, and the
knowledge of Lt needs not be perfect; it only needs to be valid “through P .” This
allows successful reconstruction even when it is not possible to describe λe com-
prehensively, or when L is imperfectly known — only reconstructed high-level
descriptions have to be accurate. For instance, being unable to predict the actual
number of friends of a given agent (a specific fact on L) should not prevent us from
rebuilding the fact that the distribution of acquaintances follows a power-law (a
specific fact on H).

Reconstructing a knowledge community We may now focus on the above-men-
tioned social complex system, a knowledge community, for which our thesis solves
a reconstruction problem. We will indeed rebuild several aspects of the struc-
ture of such a community — these are high-level phenomena. Foremost among
these aspects is the description of the community in smaller, more precise sub-
communities. Here an “epistemic community” is understood as a descriptive in-
stance only, not as a coalition of people who have some interest to stay in the
community: it is a set of agents who simply share the same knowledge concerns.



12 General introduction

Epistemologists traditionally describe a whole field of knowledge by characteriz-
ing and ordering its various epistemic communities, and they basically achieve
this task by gathering communities in a hypergraph, which we call epistemic hyper-
graph. A hypergraph is a graph where edges can connect groups containing more
than two nodes.

We thus support the following thesis: the structure of a knowledge commu-
nity, and in particular its epistemic hypergraph, is primarily produced by the
co-evolution of agents and concepts.

In the first part, we will propose a method for exhibiting a hierarchical epis-
temic hypergraph for any given community. More precisely, we will exhibit a P

that yields H (the community structure) from L (agent and concept-based descrip-
tions) — this corresponds to the first issue. Given the assumptions, an adequate
and efficient method for achieving this task consists in using Galois lattices. By
checking the adequation between the resulting hypergraph and an empirical high-
level epistemological description of the knowledge community — i.e. of the kind
epistemologists would produce and work on — we will confirm the validity of the
projection. Better, for any time t, P will yield Ht from Lt, and as such, given the
empirical low-level dynamics λe, we will reproduce the empirical high-level dy-
namics ηe. This provides subsequently a formal way of partially defining the field
of “scientometrics”, which consists in describing scientific field and paradigm evo-
lution from low-level quantitative data.

Further, in the second part, we will micro-found the high-level phenomena in
the dynamics of the lower level of agents and concepts — this addresses the sec-
ond issue. More precisely, we will introduce a co-evolutionary framework based
on a social network, a semantic network and a socio-semantic network; as such
an epistemic network made of agents, concepts, and relationships between all of
them. We will then show that dynamics at the level of this epistemic network are
sufficient to reproduce several stylized facts of interest. Given H and the empirical
dynamics ηe on H , we will therefore propose methods to design λ from low-level
empirical data on L such that P ◦λ(L) = ηe ◦P (L). Since the dynamics will be based
on the co-evolution at the the lower level L of the epistemic network, we will sub-
stantiate our claim that epistemic communities are produced by the co-evolution
of agents and concepts.

It is nonetheless worth noting that the co-evolution occurs at the lower level of
the three networks only. We are thus within the framework of “simple emergence”:
the high-level is deduced from the lower level, but the lower level is to be influ-
enced by low-level phenomena only. In addition, we will underscore the fact that
exogeneous phenomena may also account for the social complex system evolution
(including for instance ‘strength’ of concepts, external policies, etc.). We will con-
sequently moderate the thesis, arguing eventually that reconstructing epistemic
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communities involves at least the dynamic co-evolution of agents and concepts.
In the third and last part, we will defend a more general epistemological point

on the methods and achievements of this kind of reconstruction. We will notably
situate our effort within the whole apparatus of complex system appraisal. In
this respect, we will suggest in particular that a successful rebuilding is no more
than a claim that some particular high-level stylized facts, observed with high-
level instruments (epistemologists and experts in our case) can be fully deduced
from low-level objects (here, the epistemic network). As such, reduction of a high-
level to a lower level should be understood as the successful full deduction of
the higher-level from a relevantly chosen lower level. This remark will eventually
support our choice of a co-evolutionary framework.





Part I

Knowledge Community Structure

Summary of Part I

In this part, we introduce a formal framework based on Galois lattices that
categorizes epistemic communities automatically and hierarchically, rebuild-
ing a whole community taxonomy in the form of a hypergraph of significant
sub-communities. The longitudinal study of these static pictures makes histor-
ical description possible, by capturing stylized facts such as field emergence,
decline, specialization and interaction (merging or splitting). The method is
applied to empirical data and successfully validated by categories and histo-
ries given by domain experts. We thus design a valid projection function P

from a low-level defined by links between agents and concepts to the high-
level of epistemological descriptions.





Introduction of Part I

Scientists, journalists, political activist groups, socio-cultural communities with
common references are various instances of the so-called society of knowledge. They
are in all respects smaller, embedded “sub-societies” of knowledge, with their own
norms, methods, and specific topics; as such independent to some extent, though
possibly partially overlapping. Yet, it is remarkable that any knowledge commu-
nity, whatever its level of generality — the whole society, the scientific community,
biologists, embryologists, embryologists working on a particular model-animal —
appears to be structured in turn in various implicit subcommunities, with each
subgroup contributing to knowledge creation in a distributed and complementary
manner. Expertise seems indeed to be heterogenously distributed over all agents,
with different levels of specificity and distinct areas of competence: there are very
few topics that all agents are able to deal with. As specialization occurs, knowl-
edge communities become subsequently more structured: boundaries appear be-
tween subgroups, both horizontally, with the appearance of several branches, and
vertically, with different levels of generality for appraising a given topic.

In this part of our thesis, we propose a method for building, ordering and
appraising the epistemic hypergraph of a given knowledge community, which
as a result can be compared to high-level descriptions of the knowledge commu-
nity structure. The epistemic hypergraph is a graph of knowledge communities,
where each community gathers both agents and concepts. At first sight, we denote
by knowledge community, or epistemic community, any kind of group of agents
who are interested in some common knowledge issues: a group of research for
instance investigating a precise topic, a whole field of research, a larger scientific
field, a paradigm; besides, the notion is also not necessarily restricted to academic
groups. A knowledge community needs not be a community of practice (Lave &
Wenger, 1991; Wenger & Snyder, 2000) because its agents need not be acquainted
or involved in a common practical task; although a community of practice is cer-
tainly a special type of knowledge community. On the whole, agents involved in
a same epistemic community interact using shared paradigms, meanings, judg-
ments, opinions (Haas, 1992; Cowan et al., 2000), all of which being to a certain
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extent publicly available concepts, especially in larger scale communities. There-
fore, in itself, an “epistemic complex system” achieves widespread social cogni-
tion: new concepts are being introduced by some agents, others work on them,
build upon them, refine, falsify, improve, etc. This phenomenon has even been
recently sensibly boldened by the fact that the whole process of knowledge elab-
oration has slipped from a rather centralized, well-recognized organization to a
mainly decentralized, collectively interactive and networked system. Thus, while
agents can potentially have access and be synchronized with a large part of the
knowledge produced by the whole epistemic community, they actually have ac-
cess only to a small portion of it, prominantly because of cognitive and physical
limitations. In this respect, it should be of utmost interest to have tools enabling
agents to understand the structure and the activity of their knowledge commu-
nity, at any level of specificity or generality.

More precisely, in any kind of epistemic community, agents have an implicit
knowledge of the structure of the larger global community they are participating
in. Embryologists know what molecular biology, biology, and science in general
are about. Their knowledge is thus meta-knowledge: it is knowledge on the struc-
ture of their own knowledge communities. They can name several other fields,
issues they know are close, related to their knowledge concerns, or not. Agents
can distinguish various levels of specificity as well, pragmatically knowing that a
given set of topics is usually a subfield of another larger field, or has affiliations
with several fields, roughly knowing when knowledge communities intersect in
what appears to be interdisciplinary, cross-domain enterprises.

Yet, as a matter of scalability agents have a limited and subjective knowledge of
the extent of the community they are evolving in. As such their meta-knowledge
resembles that of a folk taxonomy, in the anthropological sense, that is, a taxonomy
proper to an individual (or shared by a small-sized group) and made of its own
experience, as opposed to scientific taxonomies, deemed objective and systematic
(Berlin, 1992). Hence, epistemologists often have the last word in elaborating and
validating credible meta-knowledge. Expert-made taxonomies are prodigiously
more reliable than folk taxonomies, in particular because of their tangible method-
ology. However, again because of scalability, elaborating this meta-knowledge still
lacks precision, takes an enormous amount of work, and rarely focuses on precise
groups of agents nor investigates comprehensively the whole community; in ad-
dition, the result may be biased by a particular approach on the field.

Here, we will thus study the large-scale structure of epistemic complex sys-
tems. In fine, we wish to introduce a method for creating automatically a taxonomy
of knowledge fields — in other words, for producing a hierarchic epistemic hyper-
graph of the community structure (a high-level description P (L) from low-level
empirical data L). This hypergraph should make clear (i) which fields, disciplines,
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trends, schools of thought are to be found in such an epistemic network, and (ii)
what kind of relationships they entertain. In turn, the resulting taxonomy should
prove consistant with the already-existing intersubjective perception of the field,
which will thus be the benchmark of our procedure (the empirical H , to compare
to the P (L) produced by the method). Eventually, knowing the taxonomy at any
given time, we should be able to describe the evolution of the system; and as such
achieve a reconstruction of the history of the community on objective grounds.

The outline of this part is as follows: after having presented the context and in-
troduced the formal framework (Chap. 1), we describe how to categorize epistemic
communities in an hierarchically structured fashion using Galois lattices (Barbut &
Monjardet, 1970) (Chap. 2) and produce a lattice-based representation of the whole
knowledge community. We then apply it to empirical data, successfully comparing
our results with the expected categories given by domain experts (Chap. 3). Chap-
ter 4 details the way we build recuced taxonomies, or community hypergraphs,
and Chapter 5 adresses their evolution. In particular, field progress or decline,
field scope enrichment or impoverishment, and field interaction (merging or split-
ting) are observed in a dynamic case study. Settled both in applied epistemology
and scientometrics, this approach would ultimately provide agents with processes
enabling them to know dynamically their community structure.

Our main source of data is MedLine, a database maintained by the US National
Library of Medicine and containing more than 11 million references to health sci-
ences articles published in about 3,700 journals worldwide. We narrow our study
to articles dealing with the “zebrafish,” a fish whose embryo is translucent and de-
veloping fast, therefore widely used as a model animal by embryologists.1

1Portions of this part can be found in more details in (Roth & Bourgine, 2005; Roth & Bourgine,
2006; Roth & Bourgine, 2003).





Chapter 1

Epistemic communities

In this chapter, we present the existing works concerning epistemic community
appraisal and representation, and we introduce a formal framework along with
various definitions.

1.1 Context

Several works ranging from social epistemology to political science and economics
have given an account of the collaboration of agents within the same epistemic
framework and towards a given knowledge-related goal, namely knowledge cre-
ation or validation. For social epistemologists, it is a scientist group, or epistemic
community, producing knowledge and recognizing a given set of conceptual tools
and representations — the “paradigm,” according to Kuhn (1970) — possibly work-
ing in a distributed manner on specialized tasks (Schmitt, 1995; Giere, 2002). Con-
sidering a whole knowledge field as a huge epistemic community (e.g. biology,
linguistics), one can see subdisciplines as smaller, embedded, and more specific
epistemic communities — subfields within a paradigm. Haas (1992) introduced
the notion of epistemic community as “a network of knowledge-based experts (...) with
an authoritative claim to policy-relevant knowledge within the domain of their expertise.”
Cowan, David and Foray (2000) added that an epistemic community must share a
subset of concepts. To them, an epistemic community is “a group of agents working
on a commonly acknowledged subset of knowledge issues and who at the very least accept
a commonly understood procedural authority as essential to the success of their knowl-
edge activities.” The “common concern” aspect has been emphasized by Dupouet,
Cohendet and Creplet (2001) who define an epistemic community as “a group of
agents sharing a common goal of knowledge creation and a common framework allowing
to understand this trend.” These authors nevertheless acknowledge the need of a
notion of authority and deference.

21
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On the other hand, scientists have shown an increasing interest for methods
of knowledge community structure analysis. Several conceptual frameworks and
automated processes have been proposed for finding groups of agents or docu-
ments related by common concepts or concerns, notably in knowledge discovery
in databases (KDD) (Rocha, 2002; Hopcroft et al., 2003) and scientometrics (Ley-
desdorff, 1991a; Lelu et al., 2004). Dealing with and ordering categories automati-
cally has indeed become central in data mining and related fields (Jain et al., 1999),
along with the massive development of informational content. Besides, since a
large amount of data is freely and electronically available, the study of scientific
communities in particular has attracted a large share of the interest — especially
biologist communities: biology is a domain where the need for such techniques is
also the most pressing because article production is so high that it becomes hard
for scientists to figure out the evolution of their own community.

Yet, existing approaches in community finding are often either based on so-
cial relationships only, with community extraction methods stemming from graph
theory applied to social networks (Wasserman & Faust, 1994), or on semantic simi-
larity only, namely clustering methods applied to document databases where each
document is considered as a vector in a semantic space (Salton et al., 1975). There
have been few attempts to link social and semantic aspects, although the various
characterizations of an epistemic community insist on its duality, i.e. the fact that
such a community is on one side a group of agents who, on the other side, share
common interests and work on a given subset of concepts. By contrast, only sci-
entometrics have developed a whole set of methods for characterizing specifically
such communities, working on both scientists and the concepts they use. Cate-
gorization has been notably applied to scientific community representation, using
inter alia multidimensional scaling in association with co-citation data (McCain,
1986; Kreuzman, 2001) or other co-occurrence data (Callon et al., 1986; Noyons &
van Raan, 1998), in order to produce two-dimensional cluster mappings and track
the evolution of paradigms (Chen et al., 2002).

Along with this profusion of community-finding methods, often leaning to-
wards AI-oriented clustering, an interesting issue concerns the representation of
communities in an ordered fashion. On the whole, many different techniques have
been proposed for producing and representing categorical structures including, to
cite a few, hierarchical clustering (Johnson, 1967), Q-analysis (Atkin, 1974), for-
mal concept analysis (Wille, 1982), information theory (Leydesdorff, 1991b), block-
modeling (White et al., 1976; Moody & White, 2003; Batagelj et al., 2004), graph
theory-based techniques (Newman, 2004; Radicchi et al., 2004), neural networks
(Kohonen, 2000), association mining (Srikant & Agrawal, 1995), and dynamic ex-
ploration of taxonomies (Sacco, 2000). Here, the notion of taxonomy is particularly
relevant with respect to communities of knowledge. A taxonomy is a hierarchi-
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cal structuration of things into categories, as such an ordered set of categories (or
taxons), and is a fundamental tool for representing groups of items sharing some
properties. Taxonomies are useful in many different disciplinary fields: in biol-
ogy for instance, where classification of living beings has been a recurring task
(Whittaker, 1969; Simpson & Roger, 2004); in cognitive psychology for modeling
categorical reasoning (Rosch & Lloyd, 1978; Barthélemy et al., 1996); as well as in
ethnography and anthropology with folk taxonomies (Berlin, 1992; Lopez et al.,
1997; Atran, 1998). While taxonomies have initially been built using a subjective
approach, the focus has moved to formal and statistical methods (Sokal & Sneath,
1963; Benzécri, 1973).

However, taxonomy building itself is generally poorly investigated; arguably,
taxonomy evolution during time has been fairly neglected. Our intent here is
to address both topics: build a taxonomy of epistemic communities, then moni-
tor its evolution — as such a work which shares the aims of history of science.
At the same time while taxonomies have long been represented using tree-based
structures, we wish to produce taxonomies which deal with sub-communities af-
filiated with multiple communities (such as interdisciplinary groups) or of di-
verse paradigmatic statuses (i.e., rendering equally communities centered around
methods, processes, fields of application, given objects, etc.); therefore introducing
lattice-based structures.

1.2 Definitions

Basically, we are first trying to know (i) which agents share the same concerns and
work on the same concepts, and (ii) which these concerns or concepts are. We
are thus farther from the epistemological point of view and need not characterize
authoritative groups and their role. Hence, the definitions of an “epistemic com-
munity” introduced in the previous section seem to be too precise with respect
to authoritative and normative properties, while they lack the ability to formalize
community boundaries and extents accurately. Obviously, an epistemic commu-
nity that is simply characterized by common knowledge concerns should not nec-
essarily be a social community, with agents of the same communitiy enjoying some
sort of social link: it is neither a department nor a group of research. In addition,
we want a definition that allows some flexibility in the sense that an agent or a
semantic item (or concept) can belong to several communities. Therefore, we adopt
the following definition, keeping the notion of common “knowledge issues”, to
which we add maximality:

Definition EC-1 (Epistemic community). Given a set of agents S, we consider the
concepts they have in common and we call epistemic community of S the largest set of
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agents who also use these concepts.

In other words, taking the epistemic community (EC) of a given agent set ex-
tends it to the largest community sharing its concepts. This notion is to be com-
pared with the structural equivalence introduced in sociology by F. Lorrain and H.
White (1971). Structural equivalence describes a community as a group of peo-
ple related in an identical manner to a set of other people. When extending this
concept to a group of people related identically to the same concept set, ECs are
groups of agents related in an equivalent manner to some concepts.

Definition EC-1 is based on an agent set, and we could define correspondingly
an epistemic community as the largest set of concepts commonly used by agents
who share a given concept set. We will at first focus on agent-based epistemic com-
munities, keeping in mind that concept-based notions are defined strictly equiva-
lently and in a dual manner. In order to set up a comprehensive framework allow-
ing to work on these notions, we now introduce a few basic definitions:

Definition 1 (Intension). The intension of a set of agents S is the set of concepts which
are used by every agent in S.

Definition 2 (Epistemic group). An epistemic group is a set of agents provided with
its intension, i.e. a group of agents and the concepts they have in common.

Consider for instance that some given agents s1, s2 and s3 work on “linguis-
tics” (Lng), while “neuroscience” (NS) is being used by s2, s3 and s4 (Fig. 1.1).
Therefore, the intension of {s1, s2, s3} is {Lng}, that of {s2, s3, s4} is {NS} and that of
{s2, s3} is {Lng, NS}. Some epistemic groups of this example are thus ({s1, s2, s3};
{Lng}), ({s2, s3}; {Lng, NS}) and ({s1, s4}; {∅}).

For a given set of agents S, knowing its epistemic community comes to identi-
fying the largest group of people who share the same knowledge issues as those of
agents of S (this largest group thereby includes S) — notably, for a group of agents
prototypic of a field, this amounts to know the whole set of agents of the field.

Definition 3 (Hierarchy, maximality). An epistemic group is larger than another epis-
temic group if and only if (i) their intensions are the same and (ii) the agent set of the
former contains that of the latter.

An epistemic group is said maximal if there exists no larger epistemic group.

This statement enables us not only to compare epistemic groups but also and
more significantly to expand a given epistemic group to its maximal social size.
Interpreting definition EC-1 within this framework leads to the following refor-
mulation:

Definition EC-2 (Epistemic community). The epistemic community based on a given
agent set is the corresponding maximal epistemic group.
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Figure 1.1: Sample community, and relationships between agents s1, s2, s3, s4 and
concepts “linguistics” (Lng), “neuroscience” (NS) and “prosody” (Prs) (dashed lines).

The epistemic community based on {s4}, for instance, is thus ({s2, s3, s4}; {NS}), and
the one based on either {s1} or {s1, s2} is ({s1, s2}; {Prs, Lng}).1

Notice that we can similarly define an EC based on a concept set as the largest
set of concepts sharing a given agent set. We introduce the concept-based notions,
defined symmetrically to the agent-based notions, and thus, in the remainder of
the thesis we will equivalently denote an EC by its agent set S, its concept set C or
the couple (S, C).

Definition 4 (Extension, concept-based notions). The extension of a set of concepts
C is the set of agents using every concept in C. A concept-based epistemic group is a
set of concepts provided with its extension. A concept-based epistemic group is larger than
another one if and only if (i) their extension are the same and (ii) the concept set of the
former contains that of the latter. A concept-based epistemic community is a maximal
concept-based epistemic group.

1.3 Formal framework

In order to work formally on these notions, we need to bind agents to concepts
through a binary relation R between the whole agent set S and the whole concept
set C. R expresses any kind of relationship between an agent s and a concept c.
The nature of the relationship depends on the hypotheses and the empirical data.
In our case, the relationship represents the fact that s used c (e.g. in some article).

1The epistemic community based on {s2} is however ({s2}; {Prs, Lng, NS}); this accounts notably
for the fact that s2 can belong both to a generic community and to a more specific or multidisciplinary
community: ({s2}; {Prs, Lng, NS}) vs. ({s1, s2}; {Prs, Lng}) — see section 2.3.2 for more details.
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Sets and relations Let us consider R ⊆ S×C binding S to C. We introduce the
operation “∧” such that for any element s ∈ S, s∧ is the set of elements of C which
areR-related to s. Extending this definition to subsets S ⊆ S, we denote by S∧ the
set of elements of CR-related to every element of S, namely:

s∧ = { c ∈ C | sRc } (1.1a)

S∧ = { c ∈ C | ∀s ∈ S, sRc } (1.1b)

Similarly, “?” is the dual operation so that ∀c ∈ C, ∀C ⊆ C,

c? = { s ∈ S | sRc } (1.2a)

C? = { s ∈ S | ∀c ∈ C, sRc } (1.2b)

By definition we set (∅)∧ = C and (∅)? = S.
Definitions 1, 2 and 4 mean that if S is a set of agents, S∧ denotes its intension,

the set of concepts used by every agent in S (“∀s ∈ S”). Similarly if C is a con-
cept set, C? is its extension, the set of agents who use every concept in C. Thus,
epistemic groups are couples of kind (S, S∧) or (C?, C). On the sample commu-
nity described on Fig. 1.1, we have for instance {s1, s3}∧={Lng} and {NS, prs}?={s3}.
As Wille (1997) points out, this formalism constitutes a robust and rigourous way
of dealing with abstract notions (in a philosophical sense), characterized by their
extension (physical implementation) and their intension (properties or internal con-
tent). Here, concepts are properties of authors who use them (they are skills in
scientific fields, i.e. cognitive properties) and authors are loci of concepts (concepts
are implemented in authors).

Properties These operations enjoy the following properties:

S ⊆ S′ ⇒ S′
∧ ⊆ S∧ (1.3a)

C ⊆ C ′ ⇒ C ′? ⊆ C? (1.3b)

which means that the intension of a larger agent set is smaller, because more agents
share less. We also have:

(S ∪ S′)∧ = S∧ ∩ S′
∧ (1.4a)

(C ∪ C ′)? = C? ∩ C ′? (1.4b)

In other words, the intension of two agent sets is the intersection of their respective
intensions because a group of agents has in common what its individuals share.
Moreover, we can easily derive from (1.4) the words used by a community S ∪ S′
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by taking the intersection S∧ ∩ S′∧, or the authors corresponding to the union of
any two sets of concepts C ∪ C ′ by taking C? ∩ C ′?. Accordingly,

S∧ = (
⋃
s∈S

{s})∧ =
⋂
s∈S

s∧ (1.5a)

C? = (
⋃
c∈C

{c})? =
⋂
c∈C

c? (1.5b)

We can also conveniently read si
∧ on rows and cj

? on columns of a matrix R

representing relation R, as follows:

R =


1 1 0
1 1 1
0 1 1
0 0 1


where Ri,j is non-zero when si R cj . For instance, s4

∧ = {NS} and {Lng,NS}? =
{s2, s3} (see Fig. 1.1).

Closure operation More important, the following property holds:

S ⊆ S∧
? (1.6a)

C ⊆ C?∧ (1.6b)

And thus:

Proposition 1.
((S∧)?)∧ = S∧ and ((C?)∧)? = C? (1.7)

Proof. Indeed, (1.3a) applied to (1.6a) leads to (S∧?)∧ ⊆ S∧, while (1.6b) applied to S∧

gives (S∧) ⊆ (S∧)?∧

It is therefore possible to define the operation “∧?” as a closure operation (Birkhoff,
1948), in that it is:

extensive, S ⊆ S∧? (1.8a)

idempotent (S∧?)∧? = S∧? (1.8b)

and increasing. S ⊆ S′ ⇒ S∧? ⊆ S′∧? (1.8c)

S∧? is called the closure of S. Extensivity means that the closure is never smaller,
while idempotence implies that applying ∧? more than once does not change the
closure. Finally, that ∧? is increasing corresponds to the idea that the closure of a
larger set is larger.
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Given two subsets S ⊆ S and C ⊆ C, a couple (S, C) is said to be closed (or
complete) if and only if C = S∧ and S = C?. Yet such a closed couple is actually
an epistemic group (S, S∧) where S∧? = S. Closed couples correspond obviously
to epistemic groups closed under ∧?, and therefore “∧?” is an operation yielding
a set which cannot be enlarged further (extensivity and idempotence). It expands
an epistemic group to its boundary: the largest possible set which is still based on
a given agent set.2

Since the EC based on an agent set S is the largest agent set with the same
intension as S, it becomes obvious that this largest set is the extension of the inten-
sion of S, or S∧?: applying ∧? to S returns all the agents who use the same concepts
that were common to the agents of S, hence the largest agent set — once and for all
from (1.8b). Thus, the operator “∧?” yields the EC of any agent set, and according
to definitions EC-1 and EC-2 we have:

Proposition 2. (S∧?, S∧) is the epistemic community based on S.

Proof. Indeed, (i) S∧? has the same intension as S from ((S∧)?)∧ = S∧ and (ii) it is the
largest agent set enjoying this property: consider S′ such that S′ ⊃ S∧? and S′∧ = S∧?∧,
then ∀{s} ⊂ S′ ⇒ {s}∧ ⊃ S′∧ ⇒ {s}∧ ⊃ S∧?∧ ⇒ {s}∧? ⊂ S∧?, but {s} ⊂ {s}∧? ⇒ {s} ⊂
S∧?, hence S′ ⊂ S∧?

Subsequently,

Proposition 3. Any closed couple is an epistemic community.

Note that all these properties are similar and in fact dual if we consider an
epistemic community based on C, subset of C, and operators ? and ?∧. We may
now define formally what an epistemic hypergraph is:

Definition 5 (Graph, hypergraph). A graph G is a couple (V,E) where V is a set of
vertices and E ⊂ V × V a set of edges binding pairs of vertices. A hypergraph hG is a
couple (V, hE) where V is a set of vertices and hE a set of hyperedges connecting set of
vertices. hE is thus fundamentally a subset of P(V ), the power set of V .

Definition 6 (Epistemic hypergraph). An epistemic hypergraph is a hypergraph of epis-
temic communities, (S, {S∧?|S ⊂ S}) with hyperedges binding groups of agents belong-
ing to a same EC.

2Note that given S∧ = {c1, ..., cn, c} and S′∧ = {c1, ..., cn, c′}, c′ 6= c, we have S′ 6∈ S∧?, S′ is not
in the closure of S. This might look strange for a human eye who would have said their domains of
interest to be similar. S and S′ anyway belong together to (S ∪ S′)∧?, or {c1, · · · , cn}?.
Another property may help understand better what this closure actually corresponds to: given S∧ =
{c1, ..., cn} and S′∧ = {c′1, ..., c′n} such that ∀(i, j) ∈ {1, ..., n}2, ci 6= c′j , we have (S ∪ S′)∧? = S: the
closure of two sets of scientists working on totally different issues is the whole community S.
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Each hyperedge can be labelled with the concept set corresponding to the agent
set it binds, S∧. For instance, ({s2, s3, s4}, NS) is an EC, so the hyperedge {s2, s3, s4}
belongs to the epistemic hypergraph, and may be labelled “NS”. Note that equiv-
alently an epistemic hypergraph could be based on concepts: (C, {C?∧|C ⊂ C}),
with hyperedges binding concepts of a same EC.

Cultural background Interestingly, S∧ represents the concepts the whole com-
munity shares — as such, the “cultural background”. By contrast, C? contains au-
thors who have used every word in the whole concept set C — in the real world, it
should be very rare to have C? 6= ∅.





Chapter 2

Building taxonomies

A relationship between the set of agents and the set of concepts is thus sufficient
to capture the underlying epistemic hypergraph of a given scientific field. How-
ever, we still need to hierarchize the raw set of all ECs to build a taxonomy of the
whole knowledge community, assuming that they are structured into fields and
subfields. By introducing Galois lattices particularly appropriate for this purpose,
we will represent ECs hierarchically. GLs are suitable for representing and order-
ing abstract categories relying on such a binary relation, and have been therefore
widely used in conceptual knowledge systems, formal concept classification, as
well as mathematical social science (Wille, 1982; Freeman & White, 1993; Godin
et al., 1995; Monjardet, 2003). More broadly, GLs can also be considered as hierar-
chically ordered epistemic hypergraphs — as such, GLs are both a categorization
tool and a taxonomy building method.

2.1 Taxonomies and lattices

The canonical approach for representing and ordering categories consists of trees,
which render Aristotelian taxonomies. In a tree, categories are nodes, and sub-
categories are child nodes of their unique parent category. A major drawback of
such a taxonomy lies in its ability to deal with objects belonging to multiple cate-
gories. In this respect, the platypus is a famous example: it is a mammal and a bird
at the same time. Within a tree, it has to be placed either under the branch “mam-
mal,” or the branch “bird.” Another problem is that trees make the representation
of paradigmatic categories extremely unpractical. Paradigmatic classes are cate-
gories based on exclusive (or orthogonal) rather than hierarchical features (Vogel,
1988): for instance urban vs. rural, Italy vs. Germany. In a tree, “rural Italy” has to
be a subcategory of either rural or Italy, whereas there may well be no reason to
assume an order on the hierarchy and a redundancy in the differenciation.

31
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A straightforward way to improve the classical tree-based structure is a lattice-
based structure, which allows category overlap representation. Technically, a lattice
is a partially-ordered set such that given any two elements l1 and l2, the set {l1, l2}
has a least upper bound (denoted by l1 t l2 and called “join”) and a greatest lower
bound (denoted by l1 u l2 and called “meet”):

Definition 7 (Lattice). A set (L,v,t,u) is a lattice if every finite subset H ⊆ L has a
least upper bound in L noted tH and a greatest lower bound in L noted uH under
the partial-ordering relation v.1

In a lattice, the platypus may simply be the sole member of the joint cate-
gory “mammal-bird,” with the two parent categories “mammal” and “bird.” The
“mammal-bird” category is “mammal”u“bird,” i.e. “mammal”-meet-“bird.” The par-
ent category (“animal”) is “mammal”t“bird”, or “mammal”-join-“bird”. Besides, lat-
tices may also contain different kinds of paradigmatic categories at the same level
— see Fig. 2.1. Note that such an algebraic lattice is not to be confused with what
the term “lattice” traditionally covers in physics: a mesh, a regular grid, a periodic
configuration of points whose structure has nothing to do with our lattices.

2.2 Galois lattices

We hence argue that a lattice replaces efficiently and conveniently trees for describ-
ing taxonomies.2 In order to create a lattice-based taxonomy of ECs, we first need
to provide a partial order between ECs. Namely, we say that an EC is a subfield
of a field if its intension is more precise than that of the field; in other words, if
the concept set of the subfield contains that of the field. Formally, we define the
strict partial order @ such that (S, S∧) @ (S′, S′∧) means that (S, S∧) is a subfield of
(S′, S′∧), with:

(S, S∧) @ (S′, S′∧) ⇔ S ⊂ S′ (2.1)

Hence (S, S∧) can be seen as a specification of (S′, S′∧), since its concept set is
larger (S∧ ⊃ S′∧) thus defining (S, S∧) more precisely, while less agents belong to
its extension (S ⊂ S′). Conversely, (S′, S′∧) is a “superfield” or a generalization of
(S, S∧). We can thus render both generalization and specification of closed couples
(Wille, 1992). For instance, if we consider (S, S∧) as a school of thought, a subfield
(S′, S′∧) @ (S, S∧) can be seen as a trend inside the school.

1In this respect the power set of a set X provided with the usual inclusion, union and intersection,
(P(X),⊆,∪,∩), is a lattice.

2We will not consider graded categories like fuzzy categories (Zadeh, 1965) and thick categories,
such as locologies (De Glas, 1992).
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Figure 2.1: Trees vs. lattices. Top: Multiple categories: in a tree, the platypus needs
either to be affiliated with mammal or bird, or to be duplicated in each category — in
a lattice, this multiple ascendancy is effortless. Bottom: Paradigmatic taxonomies:
in a tree, a paradigmatic distinction (e.g. territories vs. habitat types) must lead to
two different levels and cannot be represented as a single category — in a lattice,
the two paradigmatic notions may well be on the same level, leading to mixed
sub-categories.
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Now, using the natural partial order v, gathering the set of ECs allows us to
define a lattice that hierarchically orders all ECs. The Galois lattice (Birkhoff, 1948)
is exactly the ordered set of all epistemic communities built from S, C and R:

Definition 8 (Galois lattice). Given a binary relation R between two finite sets S and
C, the Galois lattice GS,C,R is the set of every complete couple (S, C) ⊆ S ×C under
relation R. Thus,

GS,C,R = {(S∧?, S∧)|S ⊆ S} (2.2)

Proposition 4. (GS,C,R,v,t,u) is a lattice, with t and u such that ∀(S, C), (S′, C ′) ∈
GS,C,R, {

(S, C) t (S′, C ′) = ((C ∩ C ′)?, C ∩ C ′)
(S, C) u (S′, C ′) = (S ∩ S′, (S ∩ S′)∧)

Proof. Indeed, ((C ∩ C ′)?, C ∩ C ′) is closed and belongs to GS,C,R: (C ∩ C ′)?∧ = (S∧ ∩
S′∧)?∧ = (S ∪ S′)∧?∧ = (S ∪ S′)∧ = C ∩C ′, from (1.4) & (1.7). Suppose now (σ, σ∧) closed
such that S ⊂ σ, S′ ⊂ σ, so (S ∪ S′) ⊂ σ, (S ∪ S′)∧? ⊂ σ∧? = σ, i.e. (C ∩ C ′)? ⊂ σ,
thus (C ∩ C ′)? is the smallest closed σ such that S ⊂ σ and S′ ⊂ σ. The same goes for
(S ∩ S′, (S ∩ S′)∧).

A graphical representation3 of a GL is drawn on Fig. 2.2 from the sample com-
munity of Fig. 1.1: an EC closer to the top is more general: the hierarchy reproduces
the generalization/specialization relationship induced by @. It is straightforward
to see that a GL can be seen as an epistemic hypergraph. Note that Galois lattices
are also called “concept lattices” in other contexts (Wille, 1992; Stumme, 2002) —
in other epistemic communities...4

2.3 GLs and categorization

Galois lattice theory offers a convenient way to group agents with respect to con-
cepts they share, and as such it is yet another clustering method (CM). Nonethe-
less, if a GL contains all epistemic communities, ordered in a lattice-based taxon-
omy, we need to show why this tool is relevant as regards a community description

3We represent the GL using the Hasse diagram, which is a general method for rendering partially-
ordered sets. In a Hasse diagram, an element is linked by a line to its covers (the smallest greater
elements), and no element can be geometrically over another one if it is not greater (Davey & Priest-
ley, 2002).

4Let us also mention Q-analysis (Atkin, 1974), whose principles strongly recall GLs. Again, given
a relation R between two sets, Q-analysis introduces polyhedra such that for each object s of the
first set, the associated “polyhedron” is made of vertices c such that sRc. The notion of “maximal
hub / maximal star” replaces that of closed couple (Johnson, 1986). However, while Galois lattices
focus on the hierarchy between closed couples, Q-analysis is more interested in connected paths
between polyhedra, by making an extensive use of equivalence classes of Q-connected components.
In particular, two polyhedra sharing at least Q+1 vertices are Q-near, and polyhedra between which
there is a chain of Q-near polyhedra are said to be Q-connected.
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Figure 2.2: Creating the Galois lattice corresponding to the sample community
of Fig. 1.1. The GL contains 6 ECs. Solid lines indicate hierarchic relationships,
from top (most general) to bottom (most specific); ECs are represented as a pair
(extension, intension) = (S, C) with S∧ = C and C? = S.
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task. Is a GL able to capture and reveal a meaningful structure of a given commu-
nity? There are several stylized facts we would like GLs to rebuild, primarily the
existence of subfields and significant groups of agents working within those sub-
fields. Assuming a certain organization of scientific communities, the justification
for this method will lie (i) in the fact that it partitions a field into smaller subfields
corresponding to scientific communities, and (ii) in the agreement between epis-
temic communities rebuilt and extracted using GLs and those explicitly given by
domain experts.

2.3.1 About relevant categorization

Let us first examine what clustering methods reveal about data: from any input
set of objects provided with attributes, CMs are designed to produce an output,
namely clusters of objects. CMs regroup the data even when the objects have no
attribute in common, where any clustering would in fact be meaningless. In sort-
ing objects from their size and value, clustering algorithms give results which are
unlikely to represent, say, functional categories. To be relevant, CMs need to be
guided by assumptions on the data structure: an obvious necessary assumption is
that it does at least exhibit a clustered structure. It is necessary to inquire and spec-
ify what a given CM aims to rebuild: it would be unwise to trust its output with-
out having checked its adequacy to data and defined what constitutes a cluster or
a community. Both the choice of the CM and the choice of attributes (labelling of
data) are decisive.5

The same holds for Galois lattices: one can draw a GL from any two sets of
objects and a given relationship between them, but there is no reason a priori why
the lattice should reveal a remarkable structure, even if it is built, represented or
managed efficiently. There should exist a lot of data for which this categorization
is just irrelevant. In order to know whether and why GL is an appropriate CM for
producing a taxonomy of knowledge communities, it is necessary to investigate
the nature and organization of these communities.

5One might thus distinguish (i) labelling irrelevant for the kind of data studied, while using a
relevant CM; from (ii) CM irrelevant for the kind of data studied, however labelled relevantly. Take
for instance a linguist who would like to group the words light, dark, holy and evil as regards their
semantic field. He might consider two criteria: brightness and goodness, and select e.g. the following
numerical representations: light: +5 (brightness), +1 (goodness); dark: -5, -1; holy: +1, +5; evil: -1, -5.
For sure an irrelevant labelling, i.e. a bad choice in the previous criteria (say, choosing the number
of vowels and the number of consonants) would obviously give him a meaningless result. But an
irrelevant clustering method, e.g. based on Euclidian distances, would also give him inconsistent
output in grouping light with holy, and dark with evil, while he wanted light with dark, and holy with
evil.
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Figure 2.3: Galois lattice of the sample community (hierarchical structure drawn
in solid lines relatively to @, i.e. “bottom”@“top”). The medium level (dashed
ellipse) contains closed couples ({s1, s2, s3}; {Lng}) and ({s2, s3, s4}; {NS}) obviously
corresponding to major fields (linguistics and neuroscience). Hierarchy yields just
below interesting subcommunities like ({s1, s2}; {Lng, Prs}) or ({s2, s3}; {Lng, NS}),
possibly prototypical of more specific subfields.

2.3.2 Assumptions on EC structure

Our main assumption is that there are fields of knowledge which can be described
by concept lists (relevant labelling), and which are being implemented by sets
of agents. Taking again the first example, some people are obviously linguists:
among them, some deal with a given aspect, say prosody; some other scientists
deal with neuroscience, while a few of them are interdisciplinary and use both
concepts. Knowledge fields and their corresponding agent sets are epistemic com-
munities, which are precisely what GLs consist of (see Prop. 3). Moreover and
also crucial, these fields are hierarchically organized: (i) a general field can be di-
vided into many subfields, themselves possibly having subcategories or belong-
ing to various general fields, and (ii) some fields can be multi-disciplinary or inter-
disciplinary in that they respectively involve or integrate two or more subfields
(Klein, 1990). For instance, cognitive science is a general field gathering various
subfields such as cognitive linguistics and cognitive neuroscience, thus being mul-
tidisciplinary. But the subfield “cognitive neurolinguistics” is interdisciplinary be-
cause it mixes both parent disciplines.

GL relevance as regards these properties results from its natural partial order
v, which reflects a generalization/specialization relationship between fields and
subfields as discussed previously (see also Fig. 2.3), as well as multidisciplinarity
and interdisciplinarity through particular patterns called diamonds (see Fig. 2.4).
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Figure 2.4: Zoom on Fig. 2.3 showing one possible diamond. A multidisciplinary
field is at the top of the diamond (here “∅”, which can be considered as “cognitive
science”) and covers “cognitive linguistics” and “cognitive neuroscience”, which
themselves, when combined, define an interdisciplinary subfield, “cognitive neu-
rolinguistics”.

2.3.3 GLs and selective categorization

Thus, GLs are a relevant tool for building taxonomic lattices from simply R, S
and C. More generally, it is worth noting that we can replace authors with objects,
and concepts with properties. This yields a generic method for producing a compre-
hensive taxonomy of any field where categories can be described as a set of items
sharing equivalently some property set. This has been indeed a useful applica-
tion of GLs in artificial intelligence (as “Formal Concept Analysis”) (Wille, 1982;
Ganter, 1984; Wille, 1997; Godin et al., 1998), and has been investigated as well in
mathematical sociology recently (Wasserman & Faust, 1994; Batagelj et al., 2004), as
well as mathematical social science in general (Freeman & White, 1993; Monjardet,
2003; Duquenne et al., 2003).

However, a serious caveat of GLs is that they may grow extremely large and
therefore become very unwieldy. Even for a small number of agents and concepts,
GLs contain often significantly more than several thousands of ECs. Thus, it is still
unclear why a GL would produce a useful and usable categorization of the commu-
nity under study. Indeed, by definition a GL contains all epistemic communities.
This property is already restrictive: sets of agents or sets of concepts which have
nothing or nobody in common (i.e. their intension or extension is ∅) or more gen-
erally which are not “closed”, are not epistemic communities and hence do not
appear in the GL. Yet GS,C,R contains all ECs: this includes naturally most single-
tons (s∧?, s∧) as well as (S,S∧), but also and especially all the intermediary ECs.
Among those, many do not correspond to an existing or relevant field of knowl-
edge, because they are too small or too specific. For a single scientist {s}, the
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closure {s}∧? will admittedly be equal to {s}, because no other scientist than s is
likely to use every concept in {s}∧ (there are strong chances that ∀s′ ∈ S, ∃w ∈ s∧

and 6∈ s′∧). Agent s is “original”.
Consider the agents working on an actual knowledge field F (e.g. a real disci-

pline). If we consider only a few of these agents, there is a strong chance that they
share some original concepts other than those of F . These few agents S will thus
constitute a small EC, (S∧?, S∧ ) F ). However, the more agents working on F in
S, the less likely they are to share concepts other than those of F , and the more
likely the decreasing intension S∧ reaches F . For any agent set S whose intension
S∧ reaches F , the corresponding epistemic community S∧? is the whole commu-
nity working on F . This induces a gap between (i) small ECs using F plus some
additional original concepts, and (ii) the suddenly emerging EC (S∧?, S∧ = F ) —
“emerging” because it suddenly gathers many more agents than S. We conjecture
that there is a relevant level for which closed sets S∧?, and identically C?∧, are
representative of a field or a trend. This also means that some epistemic commu-
nities listed by GLs are deemed to be prototypical of these fields. They are located
between the whole agent set, too general, and too specific communities, that is, at
a medium level of size and generality which is to be compared to the basic-level of
categorization introduced by Rosch and Lloyd (1978).6 This medium level shall
constitute our basic-level of epistemic categorization, in such a way that the field
would be too general above it (“superordinate categories”), and too precise under
it (“subordinate categories”).

Given these assumptions, GS,C,R is expected to exhibit significant structural
properties which could help design criteria for detecting major trends (basic-level
categories) within a more general field, in a somewhat automated manner. In par-
ticular, in the light of the present remarks populated ECs should be remarkable
ECs. We will bring empirical evidence to support this conjecture in Chap. 3. More
broadly, our objective is to use GLs in order to extract a significant epistemic hyper-
graph of relevant ECs, which is in fine a taxonomy matching empirical expert-based
descriptions of the community structure.

2.4 Comparison with different approaches

Community and group detection have been investigated in both computer science
(graph theory as well as artificial intelligence) and sociology. Clustering methods
originating from computer science rely on graph theory and then on algorithms

6Basic levels obey in particular to two principles (Barthélemy et al., 1996): (i) a principle of mini-
mal cognitive cost (which suggests for instance to look at largest communities), and (ii) a principle
of reality (which requires to check that reality fits the assumptions on category structure).
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that partition graphs in a number of clusters, fixed a priori or not (such as spec-
tral bisection or Kernighan-Lin algorithm (Newman, 2004)), or on object proper-
ties viewed as a multi-dimensional vector, where objects are grouped according to
their relative similarity (such as k-means (Hartigan, 1975), probabilistic neural net-
works (Specht, 1990), Kohonen maps (Kohonen, 2000)), similarity measures being
mostly based on Euclidian distance. The main drawback of these methods is their
relevance for social science: they eventually infer communities with no particular
assumption on the nature of the social groups that these CMs are supposed to ex-
tract from data. Thus, produced clusters have an unclear connection with what
social scientists would call communities.

Sociologists by contrast introduce hypotheses and tools proper to social net-
works — such as cohesion and strong ties (Burt, 1978; Wellman et al., 1988), cen-
trality (Freeman, 1977; Friedkin, 1991) or structural equivalence (Lorrain & White,
1971) — which yield CMs more adequate to social group detection than generic
computer science methods, including for instance hierarchical clustering (Johnson,
1967), structural balance (Doreian & Mrvar, 1996), blockmodeling (Batagelj et al.,
1999) or, more recently, structural cohesion and k-components (Moody & White,
2003), and the Girvan-Newman algorithm (Girvan & Newman, 2002) and its im-
provement by Radicchi et al. (2004).

In addition, most of these methods produce hierarchically structured clusters
which are in fact more or less dendrograms. Yet a dendrogram is a cluster tree, and
ascendancies cannot be multiple: a community is bound to be embedded into a
lineage of increasing communities. It cannot have ascendancies in various “direc-
tions,” and an agent cannot be part of many non-embedded, overlapping commu-
nities.

In any case, methods relying only on single networks of social relationships
(e.g. co-authorship) may prove to be insufficient and inefficient in order to find
epistemic communities which, as we said before, are not necessarily socially linked.
One-mode data (or projection of two-mode data onto one-mode data) also entails
a loss of crucial structural information (see Fig. 2.5). Consider for instance a one-
mode concept network where links arise between two concepts whenever they
share some authors: there would be no way, here, to distinguish a triangle of con-
cepts sharing the same set of authors, from a triangle of concepts linked through
pairs of totally different author sets; this distinction is however central in our case.
Data duality brought by the reciprocal linkage of agents to concepts and the corre-
sponding symmetry between agent-based and concept-based notions (definitions
1, 2, 3 and EC-2, and definition 4) is moreover well rendered by a GL, being a hier-
archy of closed couples considered equivalently as agent sets or as concept sets.
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Chapter 3

Empirical results

In this chapter, (i) we present a first experimental protocol, enabling us to create a
static taxonomy from bibliographic data, and (ii) we validate a basic stylized fact,
the presence of ECs having a large agent set — a feature which cannot be explained
only by the popularity of some concepts, as we will show.

3.1 Experimental protocol

To conduct our experiments on scientific communities, we need data stipulating
which agents use which concepts. We consider article collections, assuming that
articles are a faithful account of what their authors are working on. However, an
important point is to define what a concept is, such that it appears in an article. Is it
a paradigm such as “universal gravitation” or a simple word like “operon”? For in-
stance, authors provide their articles with keywords: considering these keywords
as concepts might constitute a relevant level of categorization while being a con-
venient idea. Yet, keywords are poor indicators, for authors often omit important
keywords. Depending on the database, keywords for a same article may differ.

Word groups as concepts Getting concepts through words and nominal groups
(terms) from the title, abstract or body is safer. At first we considered that each
word or nominal group is a concept, even if we were still hampered by linguistic
phenomena such as homonymy, polysemia, synonymy (Jackendoff, 2002), syllep-
sis (Jacquelinet et al., 2000), and the fact that different authors may have different
definitions of the same word or understand different concepts under an identical
nominal group (Lavie, 2003). Some techniques (Wang et al., 2000) could be used to
determine the contextual meaning of nominal groups, but we assumed that nom-
inal groups represent sufficiently distinguishable and homogenous references to
concepts — we also ignored the fact that their meaning possibly evolves with time

43
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(Leydesdorff, 1997). This definition does not prevent us from observing higher-
level concepts such as theories or even paradigms, because we can refer to these
concepts a posteriori by considering sets of words, for example interpreting {“cell,”
“DNA,” “gene,” “genetics,” “molecular”} as molecular biology.

We proceeded with title and abstract words only, because complete article con-
tents are seldom available. While apparently rough, these minimal assumptions
yielded significant results anyway.

Data processing We treated the data according to the following methodology:

1. Collect and automatically process article data (title, abstract, authors) for a
given community and period of time. As regards abstract and title, we apply
a basic linguistic processing consisting in:

• Excluding unsignificant words (stop-words), such as common and rhetor-
ical English words (“often,” “then,” “we,” etc.) and irrelevant words with
respect to the domain (“demonstrate,” “postulate,” “specimen,” “study,”
etc.), using a list of more than 2,500 words, to which we add non-words
such as figures, percentages, dates, etc.

• Excluding rare words, i.e. words appearing n times or less in the whole
corpus (such as words appearing only once, also called hapax legomena
or hapaxes). We took n = 4.

• Stemming the remaining words, i.e. reducing morphological variants
of words to their stem (root form) using a slightly improved version of
Porter’s stemming algorithm (Porter, 1980), and then creating the cor-
responding word classes (for example, “genetic” and “genetics” both re-
duce to “genet”).

2. Identify unique authors and unique words, and then create the weighted ma-
trix R of links between authors and words, where Rij is equal to the number
of articles where author i used concept j (see Fig.3.1).

3. Consider a representative sample of the whole community by extracting ran-
domly and uniformly some lines from matrix R. We chose to keep each line
with probability .25 (this step aims at reducing GL computation cost by a
factor 40).

4. Make R a binary matrix with respect to a given threshold α, i.e. replace
Rij by 1 if Rij > α, otherwise by 0: this means that an author will not be
related to a concept he used less than α times. We used a threshold of 0.
Increasing the threshold would critically reduce both computation costs and
results significance.
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Figure 3.1: Experimental protocol: step 1 and 2 help create the core network, and
the corresponding relationship weighted matrix shown here (authors on rows,
concepts on columns). Some agents are removed through step 3 (hence some lit-
tle used concepts disappear). The GL is then computed from the binary relation
matrix obtained after step 4.

5. Calculate the Galois lattice for the binary relation R built upon matrix R,
using an implementation of Ganter’s algorithm (Ganter, 1984; Lindig, 1998).

3.2 Results and comparison with random relations

We ran the process on articles published between 1990 and 1995 obtained through
a search for “zebrafish” in publicly available bibliographic data from the MedLine

database, totalizing 418 articles, 797 authors and 2129 words after step 2 of the
protocol.1 After step 3, only 218 authors and 1817 concepts remained in R. This is
the matrix we used for computing the GL (steps 4 and 5).

1This community was chosen in part because we are sure that scientists working on the zebrafish
explicitly mention the name of the animal, at least in the abstract. This would be less certain if we
were looking for scientists working on molecular biology, or quantum mechanics for instance. Of
course, restricting the data to articles present in MedLine could induce a bias, yet this database is
also one of the most comprehensive for the field.
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Some authors and concepts appeared more frequently than others. There is a
characteristic distribution of links from agents to concepts and from concepts to
agents: a lot of agents (resp. concepts) are linked to few concepts (resp. agents), a
small number of agents are related to many concepts, few concepts are related to
many agents. We could fear GL artefacts because frequent authors or frequent con-
cepts are more likely to share or be shared by more concepts or agents. Being part
of bigger closed sets and increasing the number of these big sets, they modify the
GL structure, especially high-size closed sets. We could compare our results with
those from GLs calculated with random-generated relationships where this exact
property of the empirical data was kept. We kept the distributions of links on rows
and columns in the relationship matrix from step 3 while we reshuffled the links
themselves, using an algorithm introduced by Molloy and Reed (1995). This algo-
rithm consists in assigning a number of outgoing links to concepts to each author,
according to the desired distribution, and identically assigning a number of outgo-
ing links to authors to each concept; then matching randomly the dangling links
between authors and concepts. We call “random case” the results obtained from
computations on 40 such randomly rewired relationship matrices. We also consid-
ered two other random cases: (i) keep the same density in the relationship (same
proportion of real links in respect of possible links), which is approximately one
link out of 30; and (ii) keep only the distribution of links from agents to concepts.
Interestingly, the corresponding GLs are dramatically small, with 16,000 epistemic
communities whose sizes do not exceed 5% of the whole community (see Fig. 3.2).
Therefore, these cases were not investigated further.

3.2.1 Empirical versus random

Fig. 3.2 represents the total number of epistemic communities versus the size of
their agent set. The empirical GL contains 214,000 closed couples, with communi-
ties ranging from 1 to 196 agents, except the epistemic community (S, ∅) containing
all of the 218 agents under study. The random case contains an average of around
207,000 closed couples in the random case (standard deviation σ ' 64, 700), with
agent set sizes ranging only from 1 to 60 (σ ' 5). While the empirical GL is ap-
proximately of the same size as random GLs, it contains more high-size epistemic
communities (371 communities representing more than a fifth of the whole agent
set, against a dozen communities for the random case). There is a quite perfect fit
on low-size closed couples, yet the empirical GL is denser on high-size couples.
Cumulated densities, the proportions of closed couples containing at least a given
number of agents, are shown on Fig. 3.3: 1% of the GL in the empirical case is
made of epistemic communities containing 30 agents or more, against 0.05% in the
random case. This proportion is one thousandth against one thirty-thousandth for
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Figure 3.2: Raw distributions of agent set sizes.

communities with 50 agents or over. In the empirical case, we thus have a strongly
significative discrepancy of at least one order of magnitude more populated ECs with
more than 10% of the whole agent set.

3.2.2 Rebuilding the structure

The presence of large groups of structurally equivalent agents pointing to the same
groups of concepts supports therefore the conjecture outlined in section 2.3: high-
size epistemic communities are thus a remarkable stylized fact of our empirical
data. It is also of interest to know whether these communities are significant and
relevant, and if they help partition a field into smaller subfields corresponding to
real epistemic communities.

Our zebrafish expert, Nadine Peyriéras, showed that it was the case:

(i) The first and biggest community is unsurprisingly centered around the word
“zebrafish” and contains 196 agents (90% of the whole). The fact that it does
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Figure 3.3: Cumulated densities of agent set sizes.

not reach 100% of the community reflects the imperfection of the empirical
data collection and processing.

(ii) Then, a lot of large epistemic communities use a small set of words, namely
“gene,” “expression,” “pattern,” “embryo,” “develop” and “vertebrate.” A ma-
jority of the 218 agents are present in at least one of these communities. This
word set seems accordingly to characterize the core paradigm of zebrafish re-
searchers, even if each agent does not use it entirely. According to our expert
and to Grunwald and Eisen (2002), the zebrafish is used as a vertebrate ani-
mal model for the study of gene expression and function during embryonic
development.

Similarly, another word subset of interest is made of “cloning,” “stage,” “tran-
scription,” “sequence,” “protein,” “region,” “encode,” which constitute the inten-
sions of large epistemic communities (50 agents). According to our expert,
these words are proper to molecular biology or developmental studies, in-
cluding zebrafish study, which consists in isolating the mutated genes from a
large number of mutant fish lines then in investigating their effect on biolog-
ical processes.

(iii) Thereafter, two major groups emerge: (i) one with the epistemic community
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based on “growth” (39 agents), and (ii) the other around three epistemic com-
munities whose intensions are “neuron” (70 agents), “brain” (36 agents) and
{“nervous”, “system”} (28 agents), with many agents in common and which
altogether makes a group of 84 single agents. With only 15 agents in com-
mon, communities (i) and (ii) represent two distinct groups totalizing 108
agents. These groups correspond exactly to what the litterature describes as
significant subfields.2

Smaller communities help structure the field: the epistemic community based
on {“toxicity”} is made of 23 agents with 9 shared with “growth” and only 3
with “brain”. This latter group might be related to the study of the toxic ef-
fect of growth factors. The epistemic community based on words “acid” (45
agents) has an interesting descent, {“acid,” “amino”} (22 agents) and {“acid,”
“retino”} (21 agents), with only 3 agents in common in the extension of {“acid,”
“amino,” “retino”}, so this is a diamond with no relationship between peo-
ple working on amino acid and retinoic acid. Also, the closed couple with
intension {“spinal,” “cord”} (28 agents) includes the one based on {“spinal,”
“cord,” “neural,” “ventral”} (20 agents) with almost as many agents, suggest-
ing that (i) “spinal” and “cord” cannot be dissociated and (ii) people working
on spinal cord are also very familiar with concepts “neural” and “ventral.”

These findings summed up on Fig. 3.4 show that GLs are efficient both for
determining the community paradigm (or common background) and for finding
prevailing communities as well as basic-level subcommunities. This first partition
is made from data of the period 1990-1995 and is supposed to be a static picture of
the community structure in December 1995. Methods for studying the community
evolution through the dynamics of the GL will be described in section 5.

These results also show the usefulness of binding agents to concepts networks
and taking into account data of both types, since detected communities here are
not necessarily socially grounded: agents who belong to the same EC are likely for
example to have never collaborated. It would have been certainly uneasy, if not
impossible, to detect them with single-network based methods. Moreover, distri-
butions of links between agents and concepts do not account alone for the partic-
ular clustered structure of ECs. There is more structure in the empirical network
than distributions of links would suggest.

2At the beginning of the 90’s, according to Grunwald and Eisen (2002), “among the first mutants
to be isolated was one that was later discovered to be deficient in a growth factor needed for axis
determination, a second deficient in myofibril organization, and a third in which a specific portion
of its nervous system failed to form”.

According to the program of the first conference on zebrafish development and genetics at the
CSH Laboratory in 1994, there were seven theme-based sessions, including two on nervous system
and one on growth control. Approximately, these two fields represented half the sessions and half
the community.
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Figure 3.4: Partial view of the actual GL, which contains more than 200,000 closed
couples. It shows intension and extension sizes in brackets of selected epistemic
communities. There are various possible partitions of the whole agent set, depend-
ing on what one is looking at: objects, processes, methods. Note that on this figure
we ignored communities containing paradigmatic words (“develop,” “gene,” etc.),
thus focusing on more discriminating ECs.



Chapter 4

Community selection

So far, from a low-level L made of a relationR between agents and concepts, Galois
lattices helped us define a projection P (L) which matches two high-level phenom-
ena: (i) the presence of ECs gathering many agents, and (ii) an expert-based de-
scription of the community. Now, we would like to improve taxonomies produced
by GLs, so that we are also able to provide an history of the field that matches an
expert-based history.

To this end, a critical issue relates to the design of better criteria for distinguish-
ing basic-level epistemic communities: what makes an epistemic community be a
“basic-level” community? Which ECs should we extract from the GL to build a
reduced and meaningful hypergraph of ECs? The property of gathering an impor-
tant proportion of agents is a good yet insufficient first estimate. This quite simple
criterion bears some major drawbacks, such as the fact that small communities are
ignored, even if they correspond to well-defined but isolated fields. In this respect
taking communities close to the top is more relevant.1 These communities are in-
deed just more specific than the whole community. Hence, a more detailed set of
selection properties may include distance from the top epistemic community, dis-
tance from the empty epistemic community (∅, C), and concept set size. In this
section we explore the reduction of the GL to a manageable taxonomy.

4.1 Rationale

As we previously noticed GLs are usually very large, thus, considering only useful
and meaningful patterns instead of manipulating whole lattices becomes crucial
(in particular in an epistemological thus dynamic perspective, it would be signif-

1In other words, those belonging to the maximal antichain, which is the subset of the ECs of GS,C,R
which are not comparable one to each other, and which are maximal (each one of them is not in-
cluded in any other EC).
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Figure 4.1: From the original GL to a selected poset, or partial epistemic hyper-
graph.

icantly harder to track a series of GLs than just examining a static lattice). This
means selecting from a possibly huge GL which ECs are relevant to taxonomy
rebuilding, and excluding a large number of irrelevant ECs that could blur the pic-
ture of the community. In other words, we consider a partial, manageable view
of the whole GL which we choose in order to reflect the most significant part and
patterns of the taxonomy. Formally, the partial view is not anymore a lattice as
defined previously: it is a partially-ordered set, or poset; nonetheless it overlays on
the lattice structure and still enjoys the taxonomical properties we are interested
in (see Fig. 4.1). For the sake of clarity, we will name “partial epistemic hypergraph”
such a poset.

Selection preferences This selection process has so far been an underestimated
topic in the study of GLs, with an important part of the effort focused on GL com-
putation and representation (Dicky et al., 1995; Godin et al., 1998; Ferré & Ridoux,
2000; Kuznetsov & Obiedkov, 2002). Nevertheless, some authors insist on the need
for semantic interpretations and approximation theories in order to cope with GL
combinatorial complexity (Van Der Merwe & Kourie, 2002; Duquenne et al., 2003).
In our case, we need to specify selection preferences, i.e. which kind of ECs are
relevant for a concise taxonomy description.

At first, we would certainly focus on the largest ECs while ignoring either too
small or too specific closed sets, as we did so far: if a set of properties, attributes or
concepts corresponds to a field, one can expect that the corresponding extension is
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of a significant size. Since fields tend to be made of large groups of agents, and also
because a GL mostly consists of small communities, size proved to be a segregating
and efficient criterion, categorizing a large portion of the whole community —
however still an unsufficient criterion. Indeed, using only this criterion may be
over-selective or under-selective, notably in the following cases:

• Small yet significant sets. One should not pay attention to very small closed
sets, for instance those of size one or two: in general they cannot be consid-
ered representative of any particular EC. There is thus a pertinent threshold
for the size criterion. However, this may still exclude some small ECs that
could actually be relevant, notably those prototypical of a minority commu-
nity. If so, some other criteria might apply as well:

(i) such ECs indeed, while being small, are unlikely to be subsets of other
ECs and are more likely to be located in the surroundings of the lattice top;

(ii) alternatively, they may be unusually specific with respect to their position
in the lattice;

(iii) finally, being outside the mainstream may make them less likely to mix
with other ECs, thus having fewer descendants.

• Large yet less significant sets. Large contingent ECs may augment the GL use-
lessly. This is the case:

(i) when two ECs are large: it is likely that their intersection exists and has
fortuitously a significant size — we could discriminate ECs whose size is not
significant enough with respect to their smallest ascendant.

(ii) when empirical data fails to mention that some agents are linked to some
properties: two or more very similar ECs appear where only one exists in the
real world2 — we could avoid this duplicity by excluding ECs whose size is
too close to that of their smallest ascendant.

4.2 Selection methodology

Extending preferences and criteria Hence, agent set size does not matter alone
and selection preferences cannot be based on size only. For instance, small ECs
distant from the top are likely to be irrelevant, and certainly the most uninteresting
ECs are the both smaller and less generic ones. To keep small meaningful ECs and

2Indeed, let s1, s2, s3, s4 and s5 work on c1, c2, c3, c4 and c5, in reality. Suppose
now that some data for s5 is missing and that we are ignorant of the fact that s5 works
on c5. Then there will be two distinct communities: ({s1, s2, s3, s4}, {c1, c2, c3, c4, c5}) and
({s1, s2, s3, s4, s5}, {c1, c2, c3, c4}), which cover a single real EC.
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to exclude large unsignificant ones, some more criteria are required to design the
above preferences. For a given epistemic community (S, C), we may propose the
following criteria:

1. size (agent set size), |S|;

2. level (shortest distance to the top3), d;

3. specificity (concept set size), |C|;

4. sub-communities (number of descendants), nd;

5. contingency / relative size (ratio between the agent set and its smallest as-
cendant), λ.

Selection heuristics Then, we design several simple selection heuristics ade-
quately rendering selection preferences. Selection heuristics are functions attribut-
ing a score to each EC by combining these criteria, so that we only keep the top
scoring ECs. We may not necessarily be able to express all preferences through a
unique heuristic. Therefore, the selection process involves several heuristics: for
instance one function could select large communities, while another is best suited
for minority communities. We ultimately keep the best nodes selected by each
heuristic (e.g. the 20 top scoring ones).

Notice that agent set size |S| remains a major criterion and should take part in
every heuristic. Indeed, a heuristic that does not take size into account could assign
the same score, for example, to a very small EC with few descendants (like those
at the lattice bottom) and to a larger EC with as many few descendants (possibly a
worthy heterodox community). In other words, given an identical size, heuristics
will favor ECs closer to the top, having less descendants, etc. In general we need
heuristics that keep the significant upper part of the lattice. Hence distance to the
top d is important as well and should be used in many heuristics.

While we can possibly think of many more criteria and heuristics, we must yet
make a selection among the possible selection heuristics, and pick out some of the
most convenient and relevant ones. In this respect, the following heuristics are a
possible choice:

1. |S| : select large ECs,

2.
|S|
d

: select large ECs close to the top,

3We take here the shortest length of all paths leading to the top EC (S, ∅) (the whole community).
Indeed, paths from a node to the top are not unique in a lattice; we could also have chosen, for
instance, the average lengths of all paths.
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3. |S| |C|
d

: select large ECs unusually specific,

4.
|S|
dnd

: select large ECs close to the top and having few descendants,

5.
|S|
d

(λ− λ+)(λ− − λ): select large non-contingent ECs close to the top.4

Fine tuning these heuristics eventually requires an active feedback from em-
pirical data. For instance, one could prefer to consider only the first heuristics,
and accordingly to focus on taxonomies including only large, populated, domi-
nant ECs. Exploring further the adequacy and optimality of the choice and design
of these heuristics would also be an interesting task — heuristics yielding e.g. a
maximum number of agents for a minimal number of ECs — however unfortu-
nately far beyond reach in the present effort. We will thus authoritatively keep
and combine these few heuristics to build the partial epistemic hypergraph from
the original GL, as shown on Fig. 4.1. In any case, correct empirical results with
respect to the rebuilding task will acknowledge the validity of this choice.

4That is, of a moderate size relatively to their parents: λ ∈ [λ−; λ+] — we could thus expect to
exclude fortuitous EC intersections when λ < λ−, and duplicate ECs when λ > λ+.





Chapter 5

Taxonomy evolution

To monitor taxonomy evolution we monitor partial epistemic hypergraph evolu-
tion. To this end, we create a series of partial epistemic hypergraphs from GLs
corresponding to each period, and we capture some patterns reflecting epistemic
evolution by comparing successive static pictures. In other words, we proceed to
a longitudinal study of this series.

Interesting patterns include in particular:

• progress or decline of a field: a burst or a lack of interest in a given field;

• enrichment or impoverishment of a field: the reduction or the extension of the
set of concepts related to a field;

• reunion or scission of fields: the merging of several existing fields into a more
specific subfield or the scission of various fields previously mixed.

In terms of changes between successive partial epistemic hypergraphs, the first
pattern simply translates into a variation in the population of a given EC: the agent
set size increases or decreases.

The second pattern reduces in fact to the same phenomenon. Indeed, suppose
“linguistics” is enriched by “prosody”, i.e. {Lng} is enriched by {Prs}, thus be-
coming {Lng, Prs}. This means that the population of {Lng, Prs} is increasing.
Since this EC is still a subfield of {Lng}, the enrichment of {Lng} by {Prs} trans-
lates into an increase of its subfield. Similarly, the decrease of {Lng, Prs} would
indicate an impoverishment of the superfield {Lng}.1

1More formally, say a field (S, C1) is enriched by a concept c, becoming (S′, C1 ∪ c). This means
that the subfield (S′, C1 ∪ c) is increasing — as it is a subfield of (S, C1), it is a subfield increase. In
the limit case, when all agents working on C1 are also working on c, the superfield (S, C1) becomes
exactly (S, C1 ∪ c). In all other cases, it is (S′, C1 ∪ c), a strictly smaller subfield of (S, C1), with
S′ ⊂ S. Conversely, if a field (S′, C1 ∪ c) is to lose a specific concept c, the subcategory (S′, C1 ∪ c)
is going to decrease relatively to (S, C1).
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Figure 5.1: Top: progress or decline of a given EC (S1, C), whose agent set is grow-
ing (above) or decreasing (below) to S2. Middle: enrichment or impoverishment of
(S, C1) by a concept c, through a population change of the subfield (S′, C1 ∪ c). Bot-
tom: emergence or disappearance of a joint community (diamond bottom) based
on two more general ECs, (S, C) and (S′, C ′). Disk sizes represent agent set sizes.
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Finally, the union of various fields into an interdisciplinary subfield as well as
the scission of this interdisciplinary field comes in fact to an increase or a decrease
of a joint subfield — geometrically, this means that a diamond bottom is emerg-
ing or disappearing (see Fig. 5.1–bottom). Obviously a merging (respectively a
scission) is also an enrichment (resp. impoverishment) of each of the superfields.

Hence, each of these three kinds of patterns corresponds to a growth or a de-
crease in agent set size. The interpretation of the population change ultimately
depends on the EC position in the partial epistemic hypergraph, and should vary
according to whether (i) there is simply a change in population, (ii) the change oc-
curs for a subfield and (iii) this subfield is in fact a joint subfield. These patterns,
summarized on Fig. 5.1, describe epistemic evolution with an increasing precision.
More precise patterns could naturally be proposed, but as we shall see, these ones
are nevertheless sufficiently relevant for the purpose of our case study.

5.1 Empirical protocol

We complete here the empirical protocol presented in Chap. 3 to make it suitable
for this method. To describe the community evolution over several periods of time,
as previously we use data telling us when an agent s uses a concept c. Accordingly,
we divide the database into several time-slices, and build a series of relation matri-
ces aggregating all events of each corresponding period. Before doing so, we need
to specify the way we choose the time-slice width (size of a period), the time-step
(increment of time between two periods) and the way we attribute a concept to an
agent, thus to an article.

Time-slice width We must choose a sufficiently wide time-slice in order to take
into account minority communities (who publish less) and to get enough informa-
tion for each author (especially those who publish in multiple fields).2 Doing so
also smoothes the data by reducing noise and singularities due to small sample
sizes.

However, when taking a longer sample size, we take the risk of merging several
periods of evolution into a single time-slice. There is arguably a tradeoff between
short but too unsignificant time-slices, and long but too aggregating ones. This pa-
rameter must be empirically adapted to the data: depending on the case, it might
be relevant to talk in terms of months, years or decades.

2For instance, extremely few authors publish more than one paper during a 6-month period, so
obviously 6-month time-slices are not sufficient.
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Figure 5.2: Series of overlapping periods P1, P2 and P3.

Time-step The time-step is the increment between two time-slices, so it defines
the pace of observation. We need to consider overlapping time-slices, since we do
not want to miss developments and events covering the end of a period and the
beginning of the next one. Therefore, we need to choose a time-step strictly shorter
than the time-slice width, as shown on Fig. 5.2.

Moreover, the time-step is strongly related to the community time-scale: seeing
almost no change between two periods would indicate that we are below this time-
scale. We need to pick out a time-step such that successive periods exhibit sensible
changes.3

5.2 Case study, dataset description

We considered the same particular community of embryologists working on the
model animal “zebrafish”, but extended the set of articles to the whole period 1990–
2003. Thus, we covered what experts of the field call the beginning of the major
growth of this community, up to recent times. As such, this timespan corresponds
to a recent and important period of expansion for this community, which gathered
approximately 1, 000 agents at the end of 1995, and reached nearly 10, 000 people
by end-2003. We chose a time-slice width of 6 years, with a time-step of 4 years
— that is, a 2 years overlap between two successive periods. We thus splitted the
database in three periods: 1990-1995, 1994-1999 and 1998-2003.

To limit computation costs, we restricted the dictionary to the 70 most used and

3We may nevertheless suggest a more objective method for choosing time-step and overlap sizes.
Consider indeed the density of evolution patterns “d(i) = #patterns during i/time-slice width”, for
a given time-slice i. To this end we need to define clearly when a pattern is present: we have to define
a threshold µ such that we consider a pattern to be present as soon as a given EC size changes by
µ% between two periods. The goal is thus to get the maximum uniformity in time-slice significance,
which is equivalent to have the smallest variance for d. We could finally draw the variance σd for
various values of time-step and overlap, and select values that yield the smallest variance.
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significant words in the community, selected with the help of our expert. We also
considered for each period a random sample of 255 authors. Besides, we used a
fixed-size author sample so as to distinguish taxonomic evolutions from the trend
of the whole community. Indeed, as the community was growing extremely fast,
an EC could become more populated because of the community growth, while it
was in fact becoming less attractive. With a fixed-sized sample, we could compare
the relative importance of each field with respect to others within the evolving
taxonomy.

5.3 Rebuilding history

5.3.1 Evolution description

Few changes occured between the first and the second period, and between the
second and the third period: the second period is a transitory period between the
two extreme periods. This seems to indicate that a 4-year time-step is slightly
below the time-scale of the community, while 8 years can be considered a more
significant time-scale.4

We hence focus on two periods: the first one, 1990-1995, and the third one,
1998-2003. The two corresponding partial epistemic hypergraphs are drawn on
Fig. 5.3 (page 50). We observe that:

• First period (1990-1995), first partial epistemic hypergraph: {develop} and {pattern}
strongly structure the field: they are both large communities and present in
many subfields.

Then, slightly to the right of the partial hypergraph, a large field is structured
around brain5 and ventral along with dorsal. Excepting one agent, the terms
spinal and cord form a community with brain; this dependance suggests that
the EC {spinal, cord} is necessarily linked to the study of brain. Subfields of
{brain} also involve ventral and dorsal. In the same view, {brain, ventral} has a
common subfield with {spinal, cord}.

To the left, another set of ECs is structured around {homologous}, {mouse} and
{vertebrate}, and {human}, but significantly less.

• Third period (1998-2003), second partial epistemic hypergraph: We still observe a
strong structuration around {develop} and {pattern}, suggesting that the core

4Kuhn (1970) asserts that old ideas die with old scientists — equivalently new ideas rise with
new scientists. In this community, 8 years could represent the time required for a new generation of
scientists to appear and define new topics; e.g. the time between an agent graduation and his first
students graduation.

5We actually grouped brain, nerve, neural and neuron under this term.
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Legend: All: the whole community, Hom: homologue/homologous, Mou: mouse, Hum: hu-
man, Ver: vertebrate, Dev: development, Pat: pattern, Brn: brain/neural/nervous/neuron, Spi:
spinal, Crd: cord, Ven: ventral, Dor: dorsal, Gro: growth, Sig: signal, Pwy: pathway, Rec:
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Figure 5.3: Two partial epistemic hypergraphs representing the community at the
end of 1995 (top) and at the end of 2003 (bottom). Figures in parentheses indicate
the number of agents per EC. Lattices established from a sample of 255 agents (out
of 1, 000 for the first period vs. 9, 700 for the third one).
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topics of the field did not evolve.

However, we notice the strong emergence of three communities, {signal},
{pathway} and {growth}, and the appearance of a new EC, {receptor}. These
communities form many joint subcommunities together, as we can see on
the right of this lattice, indicating a convergence of interests.

Also, there is a slight decrease of {brain}. More interestingly, there is no joint
community anymore with {ventral} nor {dorsal}. The interest in {spinal cord}
has decreased too, in a larger proportion.

Finally, {human} has grown a lot, not {mouse}. These two communities are
both linked to {homologous} on one side, {vertebrate} on the other. While the
importance of {homologous} is roughly the same, the joint community with
{human} has increased a lot. The same goes with {vertebrate}: this EC, which
is almost stable in size, has a significantly increased role with {mouse} and
especially {human} (a new EC {vertebrate, human} just appeared).

5.3.2 Inference of an history

To summarize in terms of dynamic patterns: some communities were stable (e.g.
{pattern}, {develop}, {vertebrate, develop}, {homologous, mouse}, etc.), some enjoyed a
burst of interest ({growth}, {signal}, {pathway}, {receptor}, {human}) or suffered less in-
terest ({brain} and {spinal cord}). Also, some ECs merged ({signal}, {pathway}, {recep-
tor} and {growth} altogether; and {human} both with {vertebrate} and {homologous}),
some splitted ({ventral-dorsal} separated from {brain}). We did not see any strict en-
richment or impoverishment — even if, as we noted earlier, merging and splitting
can be interpreted as such.

We can consequently suggest the following story: (i) research on brain and
spinal cord depreciated, weakened their link with ventral/dorsal aspects (in par-
ticular the relationship between ventral aspects and the spinal cord), (ii) the com-
munity started to enquire relationships between signal, pathway, and receptors
(all actually related to biochemical messaging), together with growth (suggesting
a messaging oriented towards growth processes), indicating new very interrelated
concepts prototypical of an emerging field, and finally (iii) while mouse-related
research is stable, there has been a significant stress on human-related topics, to-
gether with a new relationship to the study of homologous genes and vertebrates,
underlining the increasing role of {human} in these differential studies and their
growing focus on human-zebrafish comparisons (leading to a new “interdisci-
plinary” field).

Point (ii) entails more than the mere emergence of numerous joint subcom-
munities: all pairs of concepts in the set {growth, pathway, receptor, signal} are in-
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volved in a joint subfield. Put differently these concepts form a clique of joint com-
munities, a pattern which may be interpreted as paradigm emergence (see Fig. 5.3–
bottom).

5.3.3 Comparison with real taxonomies

We compared these findings with empirical taxonomical data, coming both from:

1. Expert feedback: Our expert, Nadine Peyriéras, confirms that points (i), (ii)
and (iii) in the previous paragraph are an accurate description of the field
evolution. For instance, according to her, the human genome sequencing
in the early 2000s (International Human Genome Sequencing Consortium,
2001) opened the path to zebrafish genome sequencing, which made possible
a systematic comparison between zebrafish and humans, and consequently
led to the development described in point (iii). In addition, the existence of a
subcommunity with brain, spinal cord and ventral but not dorsal reminded her
the initial curiosity around the ventral aspects of the spinal cord study, due
to the linking of the ventral spinal cord to the mesoderm (notochord), i.e. the
rest of the body.

2. Litterature: The only article yet dealing specifically with the history of this
field seems to be that of Grunwald & Eisen (2002). This paper presents a
detailed chronology of the major breakthroughs and steps of the field, from
the early beginnings in the late 1960s to the date of the article (2002). While
it is hard to infer the taxonomic evolution until the third period of our anal-
ysis, part of their investigation confirms some of our most salient patterns:
“Late 1990s to early 2000s: Mutations are cloned and several genes that affect com-
mon processes are woven into molecular pathways” — here, point (ii). Note that
some other papers address and underline specific concerns of the third pe-
riod, such as the development of comparative studies (Bradbury, 2004; Doo-
ley & Zon, 2000).

3. Conference proceedings: Finally, some insight could be gained from analyz-
ing the evolution of the session breakdown for the major conference of this
community, “Zebrafish Development & Genetics” (Cold Spring Harbor Lab-
oratory, 1994, 1996, 1998, 2000, 2001, 2002, 2003). Topic distribution depends
on the set of contributions, which reflects the current community interests;
yet it may be uneasy for organizers to label sessions with a faithful and com-
prehensive name — “organogenesis” for instance covers many diverse sub-
jects. Reviewing the proceedings roughly suggests that comparative and
sequencing-related studies are an emerging novelty starting in 1998, at the
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beginning of the third period, which agrees with our analysis. On the con-
trary, the importance of issues related to the brain & the nervous system, as
well as signaling, seem to be constant between the first and the third period,
which diverges from our conclusions.

The expert feedback here is obviously the most valuable, as it is the most ex-
haustive and the most detailed as regards the evolving taxonomy — the other
sources of empirical validation are more subject to interpretation and therefore
more questionable. A more comprehensive empirical protocol would consist in
including a larger set of experts, which would yield more details as well as a more
intersubjective viewpoint, thus objective.





Chapter 6

Discussion and conclusion

We presented here a method for extracting a meaningful taxonomy of any knowl-
edge community, in the form of hypergraphs, and successfully validated it with
empirical expert-based descriptions for a given scientific community. In other
words, we designed a valid projection function P from the low-level of relations
between agents and concepts to the high-level of epistemological descriptions.
In particular, in Sec. 5.3, the two partial epistemic hypergraphs can be seen as
P (L1995) and P (L2003), which match expert-based H1995 and H2003. More, the tran-
sition from H1995 to H2003 (ηe) is also reproduced: we provide a valid high-level
dynamics η by describing the taxonomy evolution description.

The computer programs we created to achieve data processing, empirical ex-
periments and Galois lattice computations will also be made available shortly, as
open source software. It will thus be possible to reuse them in potentially any
other similar case. We are hopeful that the process can be widely used for repre-
senting and analyzing static and dynamic taxonomies: in the first place, it could
be helpful to historians of science, in domains where historical data is lacking —
notably when examining the recent past. Studies such as the recent history of
the zebrafish community, written by scientists themselves from this community
(Grunwald & Eisen, 2002), could profit from such non-subjective analysis. In this
particular case the present study might be considered the second historical study
of the “zebrafish” community. At the same time, with the growing number of pub-
lications, some fields produce thousands of articles per year. It is more and more
difficult for scientists to identify the extent of their own community: they need
efficient representation methods to understand their community structure and ac-
tivity.

More generally, unlike many categorization techniques, community labelling
here is straightforward, as agents are automatically bound to a semantic content.
Additionally, these categories would have been hard to detect using single-network-
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based methods, for instance because agents of a same EC are not necessarily so-
cially linked. Moreover, projection of such two-mode data onto single-mode data
often implies massive information loss (see Sec. 2.3). Finally, the question of over-
lapping categories — hardly addressed when dealing with dendrograms — is eas-
ily solved when observing communities through lattices.

Also, using this method is possible in at least any practical case involving a re-
lationship between agents and semantic items. As stated by Cohendet, Kirman &
Zimmermann (2003), “a representation of the organization as a community of communi-
ties, through a system of collective beliefs (...), makes it possible to understand how a global
order (organization) emerges from diverging interests (individuals and communities).”1 In
addition to epistemology, scientometrics and sociology, other fields of application
and validation include economics (start-ups dealing with technologies, through
contracts), linguistics (words and their context, through co-appearance within a
corpus), marketing (companies dealing with ethical values, through customers
cross-preferences), and history in general (e.g. evolution of industrial patterns
linked to urban centers (White & Spufford, 2006)). Having significant results in
many distinct fields would support the overall robustness of GL-based taxonomy
building.

Lattice manipulation On the other hand, our method could enjoy several im-
provements. Practically, note that computing the whole GL then selecting a partial
epistemic hypergraph is certainly not the most efficient option. Rather, comput-
ing the upper part and its “valuable” descendance (computing a fixed number
of ECs, starting from the top) should perform better — similarly to what is done
with “iceberg lattices” (Stumme et al., 2002). Thus GL computation complexity,
which is theoretically exponential, is limited upfront by the number of ECs which
should be computed. This requires however to use monotonic selection heuris-
tics, i.e. heuristics respecting the lattice partial order: if (S, N) @ (S′, N ′), then
h(S, N) < h(S′, N ′). Similarly, selection heuristics must allow for significant child
nodes to appear. Indeed, when two fields do not seem to form a joint subfield
in the partial hypergraph, it is hard to know whether they actually form a joint
subfield but are below the threshold. In the second lattice for instance, although
of similar importance as {spinal cord} (17 vs. 18 agents), the EC {brain, spinal cord}
is excluded by the selection threshold and does not appear, possibly leading us to
wrongly deduce that {brain} does not mix with {spinal cord}.

In the same direction, we could endeavor to exclude false positives such as
fortuitous intersections (as discussed in section 4.1) and merge clusters of ECs

1“Une représentation de l’organisation comme une communauté des communautés, à travers un système
de croyances collectives (...), permet (...) de comprendre comment émerge un ordre global (organisation) à
partir d’intérêts divergents (individus et communautés).”
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into single multidisciplinary ECs (like for instance “signal,” “pathway,” “receptor”).
This would lead to reduced partial hypergraphs containing merged sublattices.
Questions arise however regarding the best way to define a cluster of ECs without
destroying overlapping communities, one of the most interesting feature of GLs.
Accordingly, it could also be profitable to disambiguate and regroup terms in the
lattice using for instance Natural Language Processing (NLP) tools (Ide & Véronis,
1998): certainly not everyone assigns the same meaning to “pattern;” we would
thus have to introduce “pattern–1,” “pattern–2,” etc.

More generally, improving linguistic processing could be very informative, and
could first include the use of:

• Lemmatizers: algorithms giving the root of a word, instead of using a stem-
mer like the one used here (the “Porter stemmer,” though it is also a quite
simple yet efficient lemmatizer);

• Taggers: algorithms detecting word grammatical status in context, e.g. “sub-
ject,” “verb,” etc.;

• Morphological analyzers: algorithms recognizing the shape of a word ac-
tually composed of two or more words, like “molecular biology,” “positon
emission tomography,” etc.;

• Dictionaries: ontologies of the domain, returning classes of words consid-
ered as equivalent (as stated in Chap. 3), like “zebrafish” and “rerio brachy-
danio,” the former being the common name of the latter;

• Disambiguators: algorithms determining the meaning of words by examin-
ing the context in which they are used (Wang et al., 2000).

Most of these tools already exist, although their joint use would require a judicious
work of integration. Alternatively, it could be useful to compare these results with
those from data processed by human experts, where all linguistic processing prob-
lems become quite obsolete. For instance, (i) by providing them with a fixed list of
concepts and making them classify agents according to this list, or (ii) by making
them identify a restricted list of words they know to be sufficiently descriptive for
a given set of articles (e.g. protein nomenclature consisting of very specific names
(Lelu et al., 2004)).

Lastly, considering that some authors are more or less strongly related to some
concepts, the binary relationship may seem too restrictive. To this end, we could
use a weighted relation matrix together with fuzzy GLs (Belohlavek, 2000).
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Dynamics study Another major class of improvements is related to the study of
the dynamics. Indeed, we are now able to represent an evolving taxonomy but we
ignore whether individual agents have fixed roles or not. In particular, the stability
of the size of an EC does not imply the stability of its agent set. Fortunately, even
if our random agent samples are not consistant across periods, it would be easy to
rebuild the whole community taxonomy by filling the partial ECs with their cor-
responding full agent sets. In this case, field scope enrichment or impoverishment
could be described in a better way: by monitoring an identical agent set, and by
watching whether its intension increases or not.

More generally, we could address this topic by considering the lattice dynamics,
instead of adopting a longitudinal approach. A dynamic study would yield a bet-
ter representation of field evolution at smaller scales, nevertheless saving us the
empirical discussion about the right time-step.

Conclusion of Part I

In this part, we proposed a method for describing and categorizing knowledge
communities as well as capturing essential stylized facts regarding their structure.
After having reviewed the definitions in use in social science for knowledge com-
munities, or “epistemic communities,” we formally defined an epistemic commu-
nity as the largest group of agents who share and work on the same concepts —
as such, a conception close to structural equivalence. We showed next that the
Galois lattice structure was an adequate clustering method with respect to this
definition. Assuming that such communities are structured in fields and subfields
of common concerns, a GL faithfully represents epistemic community taxonomies
by automatically partitioning the community into hierarchic fields and subfields.
In addition, it accurately renders overlaps among epistemic communities, com-
monly called interdisciplinary fields. Finally, because it relies on the very duality
of epistemic communities (agents having common interests), our method diverges
from single-network-based methods using for instance relationships or semantic
proximity.

Yet, it was unclear whether this was sufficient to make it a useful method for
appraising so-produced taxonomies, because the set of all epistemic communities
could possibly prove really huge and intractable. GLs organize the data but they do
not reduce it much. To this end, we conjectured the existence of criteria enabling
us to discriminate within the lattice between “uninteresting” communities and in-
teresting ones; among which EC size and position in the lattice were of particular
interest. With respect to heuristics based on these criteria, selecting the most rele-
vant epistemic communities produced a partial epistemic hypergraph providing a
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manageable representation of the hierarchical structure.
Empirical results on an embryologist community centered around the model

animal zebrafish confirmed this expectation even with imperfect data quality, most-
ly because of an approximative linguistic processing. More generally, we managed
to reproduce a partition of the community assessed by domain experts. Conse-
quently, the longitudinal study of such partial taxonomies made possible an his-
torical description. In particular, we proposed to capture stylized facts related
to epistemic evolution such as field progress, decline and interaction (merging or
splitting). We ultimately applied our method to the subcommunity of embryol-
ogists working on the “zebrafish” between 1990 and 2003, and successfully com-
pared the results with taxonomies given by domain experts.





Part II

Micro-foundations of epistemic
networks

Summary of Part II

The main purpose of this part is to micro-found the high-level features we
observed in the Part I — exhibit L and λ such that P ◦ λ(L) = ηe(H). In par-
ticular, we aim to know which processes at the level of agents may account
for the emergence of epistemic community structure. To achieve a morpho-
genesis model reproducing this phenomenon, we first need to build tools
that enable the estimation of interaction and growth mechanisms from past
empirical data. Then, assuming that agents and concepts are co-evolving,
we successfully reconstruct a real-world scientific community structure for a
relevant selection of high-level stylized facts.





Introduction

“Des Esseintes (...) faisait l’exégèse de ces textes; il se complaisait à jouer pour sa satisfaction
personnelle, le rôle d’un psychologue, à démonter et à remonter les rouages d’une œuvre”2

A rebours, J.-K. Huysmans.

In the preceding part, we characterized EC structure as a high-level stylized
fact for a socio-semantic complex system. Here, we will endeavor to “micro-
found” these features. In other words, we would like to rebuild this phenomenon
from a lower-level perspective, starting from the local behavior of agents immerged
in such an epistemic network. This task is threefold:

• First, define formally the framework of epistemic networks,

• Second, design measurement tools and proceed with the observation of rele-
vant empirical facts of the networks, both high- and low-level,

• Third, reconstruct the real-world structure with the help of a dynamic net-
work morphogenesis model.

On the whole, this amounts to find the solution of a reverse problem: given an
evolving epistemic network, what kind of (possibly minimal) dynamics allow to
rebuild its structure? To bind this problem to our general reconstruction frame-
work, this comes to find λ such that given ηe and P , we have P ◦ λ = ηe ◦ P .

We make the following assumption: modeling interactions at the level of
agents who co-evolve with the concepts they manipulate is sufficient to carry
the micro-founded reconstruction of this social complex system. This question
relates more broadly to a current issue in structural social science. Modeling so-
cial network formation has indeed constituted a recent challenge for this area of
research. Social networks are usually interaction networks — nodes are agents
and links between nodes represent interactions between agents. In this respect,

2“Des Esseintes (...) expounded these texts; he took a delight, for his own personal satisfaction, in
playing the part of psychologist, in unmounting and remounting the machinery of a work” (Huys-
mans: Against the Grain).
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proposing morphogenesis models for these networks has involved several disci-
plines linked both to mathematical sociology, graph theory (computer science and
statistical physics) and economics (Skyrms & Pemantle, 2000; Albert & Barabási,
2002; Cohendet et al., 2003). Most of the recent interest in this topic has stemmed
from the universal empirical observation that the structure of real networks — in-
cluding social networks — strongly differ from that of uniform random graphs a la
Erdős-Rényi (1959), where links between agents are present with a constant prob-
ability p. The discrepancy is particularly sensible with respect to two particular
statistical parameters: the local topological structure, which has been found to be
abnormally clustered and dense in real networks (Watts & Strogatz, 1998), and the
node connectivity distribution (or degree distribution), which empirically follows
a power-law (Barabási & Albert, 1999) instead of a Poisson law in Erdős-Rényi’s
model (ER). These phenomena suggested that link formation does not occur ran-
domly but rather depends on node and network properties — that is, agents do
not interact at random but instead according to heterogenous preferences for other
nodes. While this fact was already well-documented in social science (Lazarsfeld
& Merton, 1954; Touhey, 1974; McPherson & Smith-Lovin, 2001), general network
models had been limited for long to ER-like random graphs (May, 1972; Barbour
& Mollison, 1990; Wasserman & Faust, 1994; Zegura et al., 1996).

Subsequently, much work has been focused on novel non-uniform interaction
and growth mechanisms, in order to determine processes explaining and recon-
structing complex network structures consistent with those observed in the real
world (Dorogovtsev & Mendes, 2003). The consistency, in turn, has been validated
through a rich set of statistical parameters measured on empirical networks, and
not limited to degree distributions and clustering coefficients.

After a brief overview of existing network growth models — and particularly
in relation with social networks — the goal of this part is twofold. Firstly, we de-
sign tools for measuring empirically micro-level phenomena at work in evolving
networks, in order to infer and design the interaction behavior of agents. Indeeed,
even when cognitively, sociologically or anthropologically credible, most of the
hypotheses driving these models are mathematical abstractions whose empirical
measurement and justification are dubious, if any. We hence apply these instru-
ments to the epistemic network of scientists working on the zebrafish, and eventu-
ally suggest significant implications for morphogenesis models. Secondly, we use
this knowledge to introduce a model that successfully rebuilds relevant stylized
facts observed in this epistemic network.3

3Some portions of this part, concerning in particular the epistemic network framework and the
measurement of interaction propensions, can be found in more details in (Roth & Bourgine, 2003;
Roth, 2005; ?). Besides, Sec. 9.3 is linked to a preliminary study of basic dynamic parameters pub-
lished in (Latapy et al., 2005).



Chapter 7

Networks

7.1 Global overview

Measuring and modeling Formally, as noted in Ch. 1, a network (or equivalently
a graph) is a set of nodes (or vertices) with connections between them: links (or
edges), possibly directed (going explicitly from a node to another node) or undi-
rected (symmetric, without any orientation). Networks are omnipresent in the real
world: from the lowest levels of physical interaction, in the study of mean fields
and spin glasses for instance (Parisi, 1992; Fischer & Hertz, 1993), to higher levels
of description such as biology (Yuh et al., 1998; D’Haeseleer et al., 2000; Hasty et al.,
2001), sociology (White et al., 1976; Granovetter, 1985; Wasserman & Faust, 1994;
Degenne & Forse, 1999; Pattison et al., 2000; Doreian et al., 2005), economics (Kir-
man, 1997; Cowan et al., 2002; Deroian, 2002; Goyal, 2003; Carayol & Roux, 2004)
and linguistics (Quillian, 1968; Fellbaum, 1998). Along with the empirical inves-
tigation of real-world networks, scientists need models for both descriptive and
explanatory purposes — either to study processes immerged in a network struc-
ture, or to exhibit network creation processes deemed key for the explanation or
reproduction of several stylized facts observed in the real world.

For long however, the appraisal of networks had been restricted to theoretical
approaches in graph theory and small scale empirical studies on a case-by-case
basis. In this respect, network models were mostly limited to the seminal work of
Erdős-Rényi (1959) and their “random network model”, based on a random wiring
process where each pair of nodes has a constant probability p to be bound by a link.
Random networks generated by the Erdős-Rényi (ER) model are often denoted by
GN,p, because the only parameters of their model are p and the number of nodes
N .

The assumption that the ER model was an accurate description of reality had
remained unchallenged for a long time. Yet, the empirical study of networks is a
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sibling task of the design of models: new measurement tools reveal caveats of for-
mer models, thus pushing towards the introduction of new, more accurate models.
In this respect, the recent availability of increasingly larger computational capabil-
ities has made possible the use of quantitative methods on large networks, which
yielded surprising results and consequently precipited an unprecedented interest
in networks (Barabási, 2002; Dorogovtsev & Mendes, 2003; Newman, 2003). Three
statistical parameters in particular appeared to provide an enormous insight on
the topological structure of networks:

• the clustering coefficient — that is, the proportion of neighbors of a node
who are also connected to each other, averaged over the whole network;

• the average distance — i.e. the length of the shortest path between two nodes,
averaged over all pairs of nodes;

• the degree distribution — the degree (or the connectivity) of a node is basi-
cally the number of nodes this node is connected to.1

A new turn These novel instruments opened the way to the distrust of the ER
model. In 1998 indeed, Watts and Strogatz (1998) discovered that clustering co-
efficients for many real-world networks were in flagrant contradiction with those
predicted by the ER model. They subsequently introduced a new model, “the
small-world network” model, consisting of a ring of nodes each connected to their
closest neighbors, with a proportion p of these links being randomly rewired (p is
thus a rewiring probability). Empirical values for the clustering coefficient were in
close adequation with those of the Watts-Strogatz model (WS), which like the ER
model respects a realistic shortest path length. The “small-world” metaphor was
striking and compelling, as these two features recalled intuitions about real-world
networks, especially social networks. A high clustering coefficient suggests that
many agents are forming dense, local areas of strongly connected nodes; in sociol-
ogy, this relates to the concept of transitivity (Wasserman & Faust, 1994). On the
other hand, a low shortest length path indicates that a node is generally not “far”
from any other node in the network, when considering the number of intermedi-
ate agents needed to travel from a given node to another one — a feature observed
in real social networks as well (Milgram, 1967; Dodds et al., 2003).

At about the same time, Redner (1998) empirically measured the distribution
of degrees in a citation network and found it to be scale-free — that is, it follows
a power law with P (degree = k) ∝ kα. This fact contradicted the expectations of
both ER and WS models: with ER, the degree distribution can be approximated

1In a directed network, we have to distinguish the number of outgoing links from the number of
incoming links, respectively denoted by outcoming degree vs. incoming degree.
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by a Poisson law (P (k) ∝ exp(αk)/k!) (Bollobás, 1985), with an exponentially low
probability of finding high-degree nodes. Nearly the same goes for WS (Barabási
et al., 1999). Shortly thereafter, Faloutsos et al. (1999) discovered that the phys-
ical topology of the Internet network was nothing but a scale-free network and
Barabasi & Albert (1999) discovered the same feature in the world wide web, and
collaboration networks. At this point, the ER model had been totally discredited as
a way to render the topology of real-world networks. Simultaneously, dynamical
processes were highlighted as an efficient feature for designing accurate models,
yielding at the same time a significant and realistic insight on the self-organizing
processes at work during morphogenesis.

7.2 A brief survey of growth models

History More specifically, Barabasi & Albert (BA) insisted on the point that such
topology could be due to two very particular phenomena that models were so far
unable to take into account: network growth, and preferential attachment of nodes
to other nodes. They thus pioneered the use of these two features to successfully
rebuild a scale-free degree distribution. In their network formation model, new
nodes arrive at a constant rate and attach to already-existing nodes with a likeli-
ness linearly proportional to their degree. This model was a great success and has
been widely spread and reused. As a consequence, the term “preferential attach-
ment” has been often understood as degree-related preferential attachment only,
in reference to BA’s work.

Since then, many other authors introduced network morphogenesis models
with diverse modes of preferential link creation depending on various node prop-
erties (attractiveness (Dorogovtsev et al., 2000; Krapivsky et al., 2000), age (Doro-
govtsev & Mendes, 2000), common neighbors (Jin et al., 2001), fitness (Caldarelli
et al., 2002), centrality, euclidian distance (Manna & Sen, 2002; Fabrikant et al.,
2002), hidden variables and “types” (Boguna & Pastor-Satorras, 2003; Söderberg,
2003), bipartite structure (Peltomaki & Alava, 2005), etc.) and various linking mech-
anisms (stochastic copying of links (Kumar et al., 2000), competitive trade-off and
optimization heuristics (Fabrikant et al., 2002; Berger et al., 2004; Colizza et al.,
2004), payoff-biased network reconfiguration (Carayol & Roux, 2004), two-steps
node choice (Stefancic & Zlatic, 2005), group formation (Ramasco et al., 2004; Guimera
et al., 2005), Yule processes (Morris, 2005), to cite a few). On the other side, growth
processes (if any) were often reduced to the regular addition of nodes which at-
tach to older nodes — sometimes growth is absent and studies are focused on the
evolution of links only.

Following BA’s initial model, most of these studies aimed first and before all at
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reproducing degree distributions, which had obviously to be scale-free.2 Depend-
ing on the application field of the model — WWW (Kumar et al., 2000), protein
networks (Eisenberg & Levanon, 2003), social networks (Newman, 2001d), cita-
tion networks (Vázquez, 2001), etc. — various other stylized facts can be selected,
used and compared with real-world values. Statistical parameters include notably
clustering coefficient, mean distance (shortest path length), largest connex compo-
nent size (giant component), assortative mixing,3 existence of feedback circuits (or
cycles), number of second neighbors, and one-mode community structure (Patti-
son et al., 2000; Newman, 2001d; Caldarelli et al., 2002; Watts et al., 2002; Guelzim
et al., 2002; Girvan & Newman, 2002; Latapy & Pons, 2004; Boguna et al., 2004;
Guimera et al., 2005).

Methodology In such approaches, the idea is generally to exhibit high-level sta-
tistical parameters and to suggest low-level network processes, such that the for-
mer could be deduced, or recreated, from the latter. Obviously, after having se-
lected a set of relevant stylized facts to be explained or reconstructed, designing
network morphogenesis models consists of two subtasks: it requires to define the
way agents are bound to interact with each other, as well as to specify how the
network grows. However and even in recent papers, hypotheses on such mech-
anisms are often arbitrary and at best supported by qualitative intuitions. This is
particularly true for the definition of the preferential attachment (PA) which rarely
enjoys empirical verification, in spite of the rich diversity of propositions. While
this attitude is still convenient for normative models, this is clearly unsufficient for
descriptive models — although even normative models should be able to suggest
means to reach the “norm” they introduce.

In the remainder of this part, we will thus endeavor to (i) exhibit high-level styl-
ized facts characteristic of epistemic networks, notably the EC structure observed
in the previous part, (ii) point out relevant low-level features that may account for
these high-level facts, (iii) design measurement tools to appraise these low-level
features, and (iv) design a reconstruction model based on the observed low-level
dynamics that rebuilds the high-level one. In fine, the goal of this model is to re-
produce the morphogenesis of epistemic networks, and to show consequently that
these networks are produced by the dynamic co-evolution of agents and concepts.

2There is a long history of models generating all sorts of power-law distributions (size of cities, in-
comes, etc.), dating back to the early twentieth century (from Pareto, Lotka, Zipf and Yule, to Simon
and Mandelbrot) (Mitzenmacher, 2003; Newman, 2005). The significant difference in this “network-
based paradigm” is that present network models are node-based (agent-based), not anymore relying
on global differential equations (Bonabeau, 2002).

3This term denotes the fact that neighbors of a node have a similar degree or not: high-degree
nodes connected to high-degree ones (like in social networks) or to low-degree ones (like in other
kinds of networks) (Newman, 2002).
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Before that, we formally introduce the objects we deal with.

7.3 Epistemic networks

In the first part, we studied ECs with the help of a single relation linking agents to
concepts — as such creating a bipartite graph: a socio-semantic network. A bipar-
tite graph (or two-mode network) is a graph whose vertices can be decomposed
into two disjoint sets, such that no link exists between pairs of vertices belonging to
the same set (as opposed to a monopartite graph, also called one-mode network).
In addition to the socio-semantic network, we introduce two related networks: a
social network, involving links between agents, and a semantic network, with links
between concepts. As a result, an epistemic network is made of these three networks.

Definitions

Definition 9 (Social network). The nodes in the social network S are agents, and links
represent the joint appearance of two agents in an event.

Thus S = (S, ES), where S denotes the set of agents and ES denotes the set
of undirected links. As time evolves, new events occur (e.g., new articles are pub-
lished), new nodes are possibly added to S and new links are created between each
pair of interacting agents. We actually consider the temporal series of networks St

with t ∈ N (events are dated with an integer), in order to observe the dynamics of
the network.

The semantic network is very similar to the social network:

Definition 10 (Semantic network). The semantic network C is the network of joint ap-
pearances of concepts within events, where nodes are concepts and links are co-occurrences.

Identically to S, we have C = (C, EC). When a new event occurs, new concepts
are possibly added to the network, and new links are added between co-appearing
concepts. As the social network is the network of joint appearances of agents, so
is the semantic network with concepts. In the same way we did with the previous
networks, we link scientists to the words they use, i.e. we add a link whenever
an author and a concept co-appear within an event, establishing an obvious du-
ality between the two networks. This duality has been exploited in the previous
part for the sole purpose of describing epistemic communities, yet it is also key for
explaining the reciprocal influence and co-evolution of authors and concepts.

Definition 11 (Socio-semantic network). The socio-semantic network GSC is made
of agents of S, concepts of C, and links between them, ESC, representing the usage of
concepts by agents.
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Weighted networks An important issue relative to networks in general concerns
the nature of links. Depending on the model goals and the desired precision, we
may want to take into account the fact that two nodes have interacted more than
once (thus introducing link strength), or that their interactions are more or less re-
cent (thus introducing link age). Relationships should consequently be different
according to whether agents have interacted only once and a long time ago, or
they have recently interacted on many occasions. An easy and practical way for
dealing with these notions is to use a weighted network:

• in a non-weighted network, we say that two nodes are linked as soon as they
interact, i.e. they jointly appear in at least one event. Links can only be active
or inactive.

• in a weighted network, links are provided with a weight w ∈ R+, possibly
evolving in time. We can therefore easily represent multiple interactions by
increasing the weight of a link, as well as render the age of a relationship by
decreasing this weight — for instance by applying an aging function.

This latter framework is more general as it makes it possible to model a non-
weighted network (by assigning weights of 1 or 0 respectively to active or inactive
links), while it also leaves room for creating ex post a non-weighted network from
a weighted network by setting a threshold on link weight (such that a link is active
when its weight exceeds the threshold, otherwise inactive). Besides, the design
and choice of w depends on the objectives of the modeling.

Relations Considering the three networks S, C and GSC, we deal with three
kinds of similar links: (i) between pairs of agents ES, (ii) between pairs of con-
cepts EC, and (iii) between concepts and agents ESC; we thus set up three kinds
of binary relations:

(i) a set of binary symmetrical relations RS
α ⊂ S × S from the set of agents to

the set of agents, and such that given α ∈ R and two agents s and s′, we have
s RS

α s′ iff the link between s and s′ has a weight w strictly greater than the
threshold α.

(ii) a set of binary symmetrical relations RC
α ⊂ C × C from the set of concepts

to the set of concepts, and such that given α ∈ R and two concepts c and c′,
c RC

α c′ iff the link between c and c′ has a weight w > α.

(iii) a set of binary relations Rα ⊂ S × C from the set of agents to the set of
concepts, and such that given α ∈ R, an agent s and concept c, s Rα c iff the
link between s and c has a weight w > α.
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Figure 7.1: Sample epistemic network with S = {s, s′, s′′}, C = {c, c′, c′′}, and
relations RS, RC (solid lines) and R (dashed lines).

Noticing that α < α′ ⇒ R(.)
α′ ⊂ R(.)

α , thus giving ∀α > 0,R(.)
α ⊂ R(.)

0 , we infer that
the relations R(.)

0 are maximal: two nodes are related whenever there exists a link
binding them, whatever its weight.

In the remainder of this part, to make the things simpler we choose to assign
weights equal to the number of interactions, with no aging; and we focus on the
special case α = 0, which corresponds to non-weighted networks. Consequently,
we do not pay attention to weights and related phenomena: as long as there has
been any interaction, a link is established between two nodes. More details on
weighted networks can nonetheless be found in e.g. (Barrat et al., 2004). In ad-
dition, we only consider growing networks, that is, neither nodes nor links may
disappear. R0 is identical to what R designates in Part I. To ease the notation, we
will denote RS

0 and RC
0 by RS and RC, respectively. Note that social, semantic

and socio-semantic networks are fully characterized by S, C and RS, RC and R
— see Fig. 7.1.





Chapter 8

High-level features

In this chapter, we endeavor to describe a few high-level statistical parameters
particularly appropriate for epistemic networks. We thus enrich the high-level de-
scription of Part I, consisting in the epistemic hypergraph, with these new features.
Translated in the above framework, events are articles, agents are their authors,
and concepts are made of expert-selected abstract words.

8.1 Empirical investigation

While we could have looked at many single-network parameters (such as assorta-
tivity (Newman & Park, 2003), giant component size (Guimera et al., 2005), single-
network communities (Girvan & Newman, 2002; Latapy & Pons, 2004), etc.), we
focused instead on features specific to this epistemic network (thus, mostly bipar-
tite parameters) — many results and models are already available for most tradi-
tional statistical features.

As previously, empirical data comes from the bibliographical database Medline
concerning the well-defined community of embryologists working on the zebrafish,
this time during the period 1997-2004. The dataset contains around 10, 000 authors,
6, 000 articles and 70 concepts. The 70 concepts are the same as those selected for
Part I — in addition, we consider this set to be given a priori: in the semantic net-
work, only links appear, not nodes. The rationale is twofold: first, this is consistent
with assumptions used for the preceding dynamic taxonomy study; second, it dra-
matically reduces computational complexity.

8.2 Degree distributions

In an epistemic network, ties appear in the social, semantic, and socio-semantic
networks; hence, four degree distributions are of interest:
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1. The degree distribution for the social network of coauthorship, P (k), shown on
Fig. 8.1. This distribution has been extensively studied in the litterature, no-
tably by Newman (2001b; 2001c; 2001d) and Barabasi et al. (2002), among
others. It is traditionally said to follow a power law, although often only the
tail of the distribution actually follows a power-law. It is indeed easy to see
that the distribution shape is not constant: for low degrees, the distribution
is sensibly flatter. Instead of a power-law, some may suggest that this dis-
tribution follows a log-normal law (Redner, 2005). This observation is very
natural as the log-log plot exhibits a parabolic shape, for which the best fit-
ting function is of a log-normal kind.1

Note that various other shapes may address this fitting problem equally well,
such as q-exponential functions (White et al., 2006). In any case, it appears
that a strict power-law is not the most accurate description of this degree
distribution.

2. The distribution of degrees kconcepts for the semantic network. Since there are only
70 concepts the data are very sparse, we considered cumulated distributions
(plotted on Fig. 8.2 for all eight periods). Obviously all concepts are progres-
sively connected to each other, with almost every concept having a degree of
69 at the end of the last period.

3. The distribution of degrees from agents to concepts (kagents→concepts). It follows a
power-law: few agents use many concepts, many agents use few concepts.
The exponent is similar to that of the social network and constant across
periods as well (see Fig. 8.3 — a detailed report on similar phenomena can
be found in (Latapy et al., 2005)).

4. The degree distribution for links from concepts to agents (kconcepts→agents). Again,
cumulated distributions were considered to bridge data sparsity. With time,
more and more concepts are becoming popular (used by numerous agents),
yet the repartition is still heterogeneous, with few concepts being used by a
lot of agents, and most concepts being used by an average number of agents
(see Fig. 8.3).

Considerations on bipartite graphs The socio-semantic network is obviously a
bipartite graph, with agents on one side and concepts on the other. It is also possi-
ble to consider the social network itself as a bipartite graph (Wilson, 1982; Wasser-
man & Faust, 1994; Ramasco et al., 2004; Kossinets, 2005), made of agents on one

1The interested reader may find in (Mitzenmacher, 2003) a comprehensive comparison of pro-
cesses underlying the emergence of power-law and log-normal distributions.
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Figure 8.1: Degree distribution for the social network. Dots: N(k), proportional to
P (k) = N(k)P

k′ N(k′) . Solid line: power-law fit of P (k) with kγ , here γ = −3.39. Inset:
evolution of the exponent γ for 8 periods (mean exponent is −3.19±.10). Dashed
line: Lognormal fit — indeed, the distribution has a parabolic shape: this suggests
that log N(k) = p2(log k)2 + p1 log k + p0, thus P (k) ∝ kp2 log k+p1 . This deviates
from a strict power law because of the term in kp2 log k (here, p2 = −0.61±.06,
p2 = 1.45±.22).
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Figure 8.2: Cumulated degree distribution for the semantic network, for all 8 peri-
ods — from top (1997, light blue) to bottom (2004, black).
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Figure 8.3: Degree distributions for the socio-semantic network. Top: Degree dis-
tribution from agents to concepts (dots), power-law fit (solid line), and evolution
of the exponent γ for all 8 periods (from 1997 to 2004), mean γ is−2.96±.02 (see in-
set). Bottom: Cumulated degree distribution from concepts to agents, for 8 periods
(1997-2004, from light blue to black).
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side, events on the other, and links from agents to events they participate in. Pro-
jecting this two-mode graph on a one-mode network (such that two agents are
linked in the one-mode network iff they are linked to the same event in the two-
mode network) yields in turn the classical social network. In this respect, it can be
expected that some properties of the bipartite graph and the one-mode projection
are strongly correlated: Guillaume and Latapy (2004b) for instance showed that
the one-mode projection of a bipartite network preserves scale-free degree distri-
butions. In other words, if the degree distribution from one side of a bipartite
graph to the other side follows a power-law, then the projection follows a power-
law of the same exponent.

Yet, such bipartite graphs “agents–events” are another (richer) way of consid-
ering the social network, by keeping events apart instead of losing some of the
information embedded in events. For instance, by doing so the fact that some
agents participated in the same event is not lost. More generally, any one-mode
network can be considered bipartite, if one expands the underlying event struc-
ture to a new network of events — to this end, Guillaume & Latapy (2004a) even
try to recompose events from a one-mode network.

Nonetheless, this bipartite graph is special: events are bound to appear only
once, agents cannot attach to old events; as such, the side of events is merely histor-
ical. Here, the social network is not the one-mode projection of the socio-semantic
network. Agents can bind to old concepts, so can concepts to old agents. In spite
of this, social and semantic networks could enjoy some of the properties of a one-
mode projection from a bipartite graph, if we consider that these networks are cre-
ated by using the co-appearance of agents and concepts in common events. Thus,
there are two underlying bi-partite graphs made of events: agents and events, and
concepts and events. The social and semantic networks are respectively one-mode
projections of each of these bipartite graphs. Because of their strictly historical
structure, we nonetheless discard the ‘artificial’ networks of events.

8.3 Clustering

The clustering coefficient is another valuable parameter, introduced by Watts &
Strogatz (1998). It is basically a measure of the transitivity in one-mode networks:
in other words, it expresses the extent to which neighbors of a given node are
also connected — the sociological metaphor translates into: “friends of friends
are friends”. This coefficient is usually found to be abnormally high in social net-
works, when compared to random networks such as those produced by ER, BA
models. By contrast, it is successfully reconstructed by the WS model. Along
with degree distribution, this stylized fact has been the target of many more recent
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models (Jin et al., 2001; Ebel et al., 2002; Ravasz & Barabási, 2003; Newman & Park,
2003).

Two competing formal definitions have been proposed, potentially yielding
significantly different values (Ramasco et al., 2004):

• either a local coefficient, c3(i), measuring the proportion of neighbors of node
i who are connected together,

c3(i) =
[number of pairs of connected neighbors]

ki · (ki − 1)/2
(8.1a)

where ki is the degree of node i.

• or a global measure C3 (proportion of connected triangles in the whole net-
work with respect to connected triplets),

C3 =
3 · [number of triangles]

[number of broken triangles]
(8.1b)

The factor three comes from the fact that for each triangle there are three
“broken triangles” (triplets where only two pairs are connected, see Fig. 8.4).

We focus on the local coefficient for it makes it possible to examine the clus-
tering structure with respect to node properties, in particular node degrees. Here,
each article adds complete subgraphs of authors, or cliques, to the social network:
all authors of a given article are linked to each other. In a network where events are
addition of cliques, the clustering coefficient is very likely to be close to one, since
each event adds an overwhelming quantity of triangles. Therefore, only nodes
participating in multiple events can have neighbors who are not themselves con-
nected to each other. Empirically, the local clustering coefficient is close to 1 and
decreases rather slowly with node degree (Fig. 8.5).

As such, in the case of event-based networks, c3 seems to be a trivial, very
poorly informative criterion as regards the clustering structure. Indeed, c3 is virtu-
ally bound by definition to be high. More generally, networks built with an under-
lying event structure are shown to naturally exhibit a high c3 (Guillaume & Latapy,
2004b; Ramasco et al., 2004).2

Bipartite clustering Very recently, bipartite clustering coefficients have been pro-
posed as a means to have a meaningful clustering measure in spite of this caveat.

2Assuming that the number of agents per event is higher than 2 — otherwise events reduce to
simple dyadic interactions, and we fall back onto classical models of single links addition (Catanzaro
et al., 2004). This may also explain why many dyadic-interaction models fail to reproduce real-world
high clustering coefficients.
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Figure 8.4: Left: Comparison between a transitive triplet, or triangle (top), and a
broken triangle, or simply connected triplet (bottom). One-mode clustering co-
efficients measure the proportion of triangles vs. broken triangles, either globally
(C3) or locally (c3). Right: Comparison between a diamond and a broken diamond,
with pairs (s′, s′′) both connected to (c′, c′′) (top) or not (bottom). Similarly, C4

and c4 provide a measure of the proportion of diamonds with respect to broken
diamonds.
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In a strictly bipartite graph, clearly triangles are impossible: the bipartite socio-
semantic network does not render links between agents. To bridge this, a sensible
idea consists in measuring the proportion of diamonds; that is, measuring how
many pairs of nodes from one side, who are connected together to a node of the
other side, are also connected to another node of the other side (see Fig. 8.4).3 In
other words, are two agents connected to a same concept likely to be connected to
other concepts? Like for the monopartite clustering coefficient, there exists both
a global version C4 (Robins & Alexander, 2004) and, latterly, a local one c4 (Lind
et al., 2005):

• locally, c4 is the proportion of common neighbors among the neighbors of a
node:

c4(i) =

ki∑
i1=1

ki∑
i2=i1+1

κi1,i2

ki∑
i1=1

ki∑
i2=i1+1

[(ki1 − κi1,i2)(ki2 − κi1,i2) + κi1,i2 ]

(8.2a)

where κj1,j2 is the number of nodes which the j1-th & j2-th neighbors of i

have in common (leaving out i).

• globally, C4 evaluates the proportion of diamonds with respect to potential
diamonds:

C4 =
4 · [number of diamonds]

[number of broken diamonds]
(8.2b)

For one diamond there are four broken diamonds (i.e., couples of connected
pairs of nodes where one node from one side is not connected to one node of
the other side).

Again we focus on the local coefficient c4, which appears to be one order of
magnitude larger compared to that measured in random networks with a power-
law degree-distribution — see Fig. 8.5. Therefore, the real socio-semantic network
enjoys an abnormally high level of bipartite clustering: many pairs of agents link-
ing together to certain concepts are more likely to share other concepts than in a
random network. Note that, as such, the bipartite coefficient is a measure of a very
local kind of structural equivalence (quantifying a “limited structural equivalence”
restricted to groups of size 2).

3Obviously, many other shapes could also be worth considering; we focused on this one because
it is very basic yet insightful.
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Figure 8.5: Left: c3(k) as a function of node degree — c3 is close to 1 and slightly
decreasing. Right: c4(k), very slightly decreasing, with an average value of 3.7 ·
10−4, to be compared to ' 3 · 10−5 in random scale-free networks (Lind et al.,
2005).

8.4 Epistemic community structure

A key high-level stylized fact characteristic of epistemic networks is the particular
distribution of ECs obtained through GLs, as presented in the previous part. An
adequate epistemic network model should ultimately yield the same EC profile as
in the real-world, which shows a significantly larger proportion of high-size ECs
— see Fig. 8.6.

Semantic distances Besides, just as we observed the bipartite clustering between
agents and concepts, we may want to know whether agents in the network are se-
mantically close to each other. Likewise, and more specifically, in which manner
are they semantically close to their social neighborhood? To this end, we need to
introduce a semantic distance. By semantic distance we mean a function of a dyad
of agents that enjoys the following properties: (i) decreasing with the number of
shared concepts between the two agents, (ii) increasing with the number of dis-
tinct concepts, (iii) equal to 1 when agents have no concept in common, and to 0
when they are linked to identical concepts. Given (s, s′) ∈ S2, we build a semantic
distance δ(s, s′) ∈ [0; 1] satistying the previous properties:4

δ(s, s′) =
|(s∧ \ s′∧) ∪ (s′∧ \ s∧)|

|s∧ ∪ s′∧|
(8.3)

Note that this kind of distance, based on the Jaccard coefficient (Batagelj & Bren,
1995), has been extensively used in Information Retrieval, as well as recently for
link formation prediction in (Liben-Nowell & Kleinberg, 2003) — however, we

4Recall that s∧ denotes the set of concepts s is linked to (cf. Part I).



94 Ch. 8 – High-level features

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
EC size

1

5

10

50

100

500

1000

number of ECs

Figure 8.6: Raw distribution of epistemic community sizes, in an empirical GL
calculated for a relationship between a random sample of 250 agents, and 70 con-
cepts.

need not focus on this particular similarity measure.

Discretizing δ Written in a more explicit manner, with s∧ = {c1, ..., cn, cn+1, ..., cn+p}
and s′∧ = {c1, ..., cn, c′n+1, ..., c

′
n+q}, we have δ(s, s′) = p+q

p+q+n ; n and p, q represent-
ing respectively the number of elements s∧ and s′∧ have in common and have in
proper. We also verify that if n = 0 (disjoint sets), δ(s, s′) = 1; if n 6= 0, p = q = 0
(same sets), δ(s, s) = 0; and if s∧ ⊂ s′∧ (included sets), δ(s, s′) = q

q+n . It is moreover
easy though cumbersome to show that δ(., .) is also a metric distance.

As δ takes real values in [0, 1] we need to discretize δ. To this end, we use a
uniform partition of [0, 1[ in I−1 intervals, to which we add the singleton {1}. We
thus define a new discrete distance d taking values inD = {d1, d2, ..., dI} such that:
D =

{
[0, 1

I−1 [, [ 1
I−1 , 2

I−1 [, ...[ I−2
I−1 , 1[, {1}

}
.

Then, we look at the distribution of semantic distances in the network, both
on a global scale (by computing the distribution for all pairs of agents) and on
a more local scale (by carrying the computation for pairs of already-connected
agents only). Results are shown on Fig. 8.7, and suggest that while similar nodes
are usually rare in the network, the picture is radically different when considering
the social neighborhood: acquaintances are at a strongly closer distance.5

5Although part of the phenomenon is biased by the fact that co-authors receive by definition
the same concepts when they write an article (especially for distance 1, which is obviously over-
represented because of, at first, co-authors who write only one paper), this fact alone is not sufficient
to explain the distribution of distances restricted to the social neighborhood.
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Figure 8.7: Left: Distribution of semantic distances on the whole graph. Right:
Distribution of semantic distance for the social neighborhood of agents only.





Chapter 9

Low-level dynamics

Designing a credible social network morphogenesis model requires to understand
both low-level interaction and growing mechanisms, as noted earlier in Sec. 7.2.
The aim of the present chapter is thus to show how we design such low-level
dynamics λ from empirical data.

9.1 Measuring interaction behavior

Formally, the preferential attachment (PA) is the likeliness for a node to be involved
in an interaction with another node with respect to node properties. Existing quan-
titative estimations of PA and subsequent validations of modeling assumptions are
quite rare, and are either:

• related to the classical degree-related PA (Barabási et al., 2002; Eisenberg &
Levanon, 2003; Jeong et al., 2003; Redner, 2005), sometimes extended to a
selected network property, like common acquaintances (Newman, 2001a); or

• reducing PA to a scalar quantity: for instance using direct mean calcula-
tion (Guimera et al., 2005), econometric estimation approaches (Powell et al.,
2005) or Markovian models (Lazega & van Duijn, 1997; Snijders, 2001).1

In addition, the extent to which distinct properties correlatively influence PA is
widely ignored. Thus, while of great interest in approaching the underlying in-
teractional behaviorial reality of social networks, these works may not be able
to provide a sufficient empirical basis and support for designing trustworthy PA
mechanisms. Yet in this view we argue that the following points are key:

1Let us also mention link prediction from similarity features based on various strictly structural
properties (Liben-Nowell & Kleinberg, 2003), obviously somewhat related to PA.

97
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1. Node degree does not make it all — and even the popular degree-related PA
(a linear “rich-get-richer” heuristics) seems to be inaccurate for some types of
real networks (Barabási et al., 2002), and possibly based on flawed behavioral
fundations, as we will suggest below in Sec. 9.2.1.

2. Strict social network topology and derived properties may not be sufficient
to account for complex social phenomena — as several above-cited works in-
sinuate, introducing “external” properties (such as e.g. node types) may in-
fluence interaction; explaining for instance homophily-related PA (McPher-
son & Smith-Lovin, 2001) requires at least to qualify nodes with the help of
non-structural data. In reference networks, the probability for citing a paper
decreases with time, since papers are gradually forgotten or obsolete (Red-
ner, 1998; Dorogovtsev & Mendes, 2000).

3. Single scalar quantities cannot express the rich heterogeneity of interaction
behavior — for instance, when assigning a unique constant parameter to
preferential interaction with closer nodes, one misses the fact that such in-
teraction could be significantly more frequent for very close nodes than for
loosely close nodes, or discover that for instance it might be quadratic instead
of linear with respect to the distance, etc.

4. Often models assume properties to be uncorrelated which, when it is not the
case, would amount to count twice a similar effect;2 knowing correlations
between distinct properties is necessary to correctly determine their proper
influence on PA.

To summarize, it is crucial to conceive PA in such a way that (i) it is a flex-
ible and general mechanism, depending on relevant parameters based on both
topological and non-topological properties; (ii) it is an empirically valid function
describing the whole scope of possible interactions; and (iii) it takes into account
overlapping influences of different properties.

In order to measure PA, we now have to distinguish between (i) single node
properties, or monadic properties (such as degree, age, etc.) and (ii) node dyad
properties, or dyadic properties (social distance, dissimilarity, etc.). When dealing
with monadic properties indeed, we seek to know the propension of some kinds of
nodes to be involved in an interaction. On the contrary when dealing with dyads,
we seek to know the propension for an interaction to occur preferentially with
some kinds of couples. Note that a couple of monadic properties can be considered
dyadic; for instance, a couple of nodes of degrees k1 and k2 considered as a dyad

2Like for instance in (Jin et al., 2001) where effects related to degree and common acquaintances
are combined in an independent way.
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(k1, k2). This makes the former case a refinement, not always possible, of the latter
case.

9.1.1 Monadic PA

Suppose we want to measure the influence on PA of a given monadic property m

taking values in M = {m1, ...,mn}. We assume this influence can be described
by a function f of m, independent of the distribution of agents of kind m. Denot-
ing by “L” the event “attachment of a new link”, f(m) is simply the conditional
probability P (L|m) that an agent of kind m is involved into an interaction.

Thus, it is f(m) times more probable that an agent of kind m receives a link. We
call f the interaction propension with respect to m. For instance, the classical degree-
based PA used in BA and subsequent models — links attach proportionally to node
degrees (Barabási & Albert, 1999; Barabási et al., 2002; Catanzaro et al., 2004) — is
an assumption on f equivalent to f(k) ∝ k.

P (m) typically denotes the distribution of nodes of type m. The probability
P (m|L) for a new link extremity to be attached to an agent of kind m is therefore
proportional to f(m)P (m), or P (L|m)P (m). Applying the Bayes formula yields
indeed:

P (m|L) =
f(m)P (m)

P (L)
(9.1)

with P (L) =
∑

m′∈M
f(m′)P (m′).

Empirically, during a given period of time ν new interactions occur and 2ν new
link extremities appear. Note that a repeated interaction between two already-
linked nodes is not considered a new link, for it incurs acquaintance bias. The
expectancy of new link extremities attached to nodes of property m along a period
is thus:

ν(m) = P (m|L) · 2ν (9.2)

As
2ν

P (L)
is a constant of m we may estimate f through f̂ such that:

 f̂(m) =
ν(m)
P (m)

if P (m) > 0

f̂(m) = 0 if P (m) = 0
(9.3)

Thus 1P (m)f(m) ∝ f̂(m), where 1P (m) = 1 when P (m) > 0, 0 otherwise.
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9.1.2 Dyadic PA

Adopting a dyadic viewpoint is required whenever a property has no meaning for
a single node, which is mostly the case for properties such as proximity, similarity
— or distances in general. We therefore intend to measure interaction propen-
sion for a dyad of agents which fulfills a given property d taking values in D =
{d1, d2, ..., dn}. Similarly, we assume the existence of an essential dyadic interac-
tion behavior embedded into g, a strictly positive function of d; correspondingly
the conditional probability P (L|d). Again, interaction of a dyad satisfying prop-
erty d is g(d) times more probable. In this respect, the probability for a link to
appear between two such agents is:

P (d|L) =
g(d)P (d)

P (L)
(9.4)

with P (L) =
∑
d′∈D

g(d′)P (d′).

Here, the expectancy of new links between dyads of kind d is ν(d) = P (d|L)ν.
Since

ν

P (L)
is a constant of d we may estimate g with ĝ:

 ĝ(d) =
ν(d)
P (d)

if P (d) > 0

ĝ(d) = 0 if P (d) = 0
(9.5)

Likewise, we have 1P (d)g(d) ∝ ĝ(d).

9.1.3 Interpreting interaction propensions

Shaping hypotheses The PA behavior embedded in f̂ (or ĝ) for a given monadic
(or dyadic) property can be reintroduced as such in modeling assumptions, either
(i) by reusing the exact empirically calculated function, or (ii) by stylizing the trend
of f̂ (or ĝ) and approximating f (or g) by more regular functions, thus making
possible analytic solutions.

Still, an acute precision when carrying this step is often critical, for a slight
modification in the hypotheses (e.g. non-linearity instead of linearity) makes some
models unsolvable or strongly shakes up their conclusions. For this reason, when
considering a property for which there is an underlying natural order, it may also be

useful to examine the cumulative propension F̂ (mi) =
mi∑

m′=m1

f̂(m′) as an estima-

tion of the integral of f , especially when the data are noisy (the same goes with Ĝ

and ĝ).
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Correlations between properties Besides, if modelers want to consider PA with
respect to a collection of properties, they have to make sure that the properties
are uncorrelated or that they take into account the correlation between properties:
evidence suggests indeed that for instance node degrees depend on age. If two
distinct properties p and p′ are independent, the distribution of nodes of kind p in

the subset of nodes of kind p′ does not depend on p′, i.e. the quantity
P (p|p′)
P (p)

must

theoretically be equal to 1, ∀p,∀p′. Empirically, it is possible to estimate it through: ĉp′(p) =
P (p|p′)
P (p)

if P (p) > 0

ĉp′(p) = 0 if P (p) = 0
(9.6)

in the same manner as previously. For computing the correlation between a mon-
adic and a dyadic property, it is easy to interpret P (p|d) as the distribution of p-
nodes being part of a dyad d.

Essential behavior As such, calculated propensions do not depend on the dis-
tribution of nodes of a given type at a given time. In other words, if for example
physicists prefer to interact twice more with physicists than with sociologists but
there are three times more sociologists around, physicists may well be apparently
interacting more with sociologists. Nevertheless, f̂ remains free of such biases and
yields the “baseline” preferential interaction behavior of physicists.

However, f̂ could still depend on global network properties, e.g. its size, or its
average shortest path length. Validating the assumption that f̂ is independent of
any global property of the network — i.e., that it is an entirely essential property
of nodes of kind p — would require to compare different values of f̂ for various
periods and network configurations. Put differently, this entails checking whether
the shape of f̂ itself is a function of global network parameters.

9.1.4 Activity and events

Additionally, as regards monadic PA, f̂ represents equivalently an attractivity or
an activity. Indeed, if interactions occur preferentially with some kinds of agents,
it could as well mean that these agents are more attractive or that they are more
active. If more attractive, the agent will be interacting more, thus being appar-
ently more active. To distinguish between the two effects, it is sometimes possible
to measure independently agent activity, notably when interactions occur during
events, or when interaction initiatives are traceable (e.g. in a directed network).

In such cases, the distinction is far from neutral for modeling. Indeed, when
considering evolution mechanisms focused not on agents creating links, but in-
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stead on events gathering agents (Ramasco et al., 2004; Guimera et al., 2005), mod-
elers have to be careful when integrating back into models the observed PA as a
behavioral hypothesis. Some categories of agents might in fact be more active and
accordingly involved in more events, not enjoying more attractivity. This would
eventually lead the modeler to refine agent interaction behavior by including both
the participation in events and the number of interactions per event, rather than
just preferential interactions.

Detailing interaction propensions In other words, for a given property m, this
means breaking down interaction propensions into:

(i) activity a(m): the conditional probability of taking part in an event:

a(m) = P (E|m) (9.7)

where “E” denotes “involvement in an event”;

(ii) interactivity ι(m, ·): the conditional distribution of the number of links during
an event, such that:

ι(m, l) = P (LE = l|m) (9.8)

where “LE” denotes the random variable “number of link extremities re-
ceived in an event”. The interactivity is thus directly linked to the distri-
bution of the size of events in which agents of kind m participate. We denote
by ῑ(m) the mean of ι(m, ·):

ῑ(m) =
∑
l∈N

(ι(m, l) · l) (9.9)

Hence, we now have:

Proposition 5. f is fully decomposable into ῑ and a:

f(m) ∝ a(m)ῑ(m) (9.10)

Proof. ν(m) is the product of (i) the mean number of link extremities received by a node
of kind m per event, and (ii) the number of nodes of kind m involved in events:

ν(m) = ῑ(m) · P (m|E)νE (9.11)

where νE is the number of events for a period. Recall from (9.1) & (9.2) that ν(m) =
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2ν
f(m)P (L)

P (m)
, then Eq. 9.11 yields:

f(m) =
νEP (L)
2νP (E)

ῑ(m) · a(m) (9.12)

As ν, νE, P (L) and P (E) are constants of m, we have f(m) ∝ a(m)ῑ(m).

For instance, very active agents (large a(m)) involved in events with few par-
ticipants (small ῑ(m)) could appear to have the same interaction propension f as
moderately active agents (mean a(m)) with a moderate number of co-participants
(mean ῑ(m)). Consequently, when considering monadic PA, event-based model-
ing requires the knowledge of both a and ῑ, for f alone would not be in general a
sufficient characterization of agent interaction behavior.

9.2 Empirical PA

We now apply the above tools to the study of the epistemic network. We examine
therein particularly two kinds of PA: (i) PA related to a monadic property: the node
degree; and (ii) PA linked to a dyadic property: semantic distance d, rendering
homophily, i.e. the propension of individuals to interact more with similar agents.
In order to have a non-empty and statistically significant network for computing
propensions, we first build the network on an initialization period of 7 years (from
1997 to end-2003), then carry the calculation on new links appearing during the
last year; 1, 000 new articles appear during the last year.

9.2.1 Degree-related PA

We use Eq. 9.3 and consider the node degree k as property m (thus M = N): in
this manner, we intend to compute the real slope f̂(k) of the degree-related PA and
compare it with the assumption “f(k) ∝ k”. This hypothesis classically relates to
the preferential linking of new nodes to old nodes. To ease the comparison, we
considered the subset of interactions between a new and an old node.

Empirical results are shown on Fig. 9.1. Seemingly, the best linear fit corrobo-
rates the data and tends to confirm that f(k) ∝ k. The best non-linear fit however
deviates from this hypothesis, suggesting that f(k) ∝ k0.97. However, the confi-
dence interval on this exponent is [0.6, 1.34] thus dramatically too wide to deter-
mine the precise exponent, which may be critical. When the data is noisy like in
the present situation, since there is a natural order on k it is very instructive to plot
the cumulated propension ˆF (k) =

∑k
k′=1 f̂(k) on Fig. 9.1. In this case, the best

non-linear fit for F̂ is F̂ (k) ∝ k1.83 ±0.05, confirming the slight deviation from a
strictly linear preference which would yield k2.
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Figure 9.1: Left: Degree-related interaction propension f̂ , computed on a one-
year period, for k < 25 (confidence intervals are given for p < .05); the solid
line represents the best linear fit. Right: Cumulated propension F̂ . Dots represent
empirical values, the solid color line is the best non-linear fit for F̂ ∼ k1.83, and the
gray area is the confidence interval.
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Figure 9.2: Left Activity a(k) during the same period, in terms of articles per period
(events per period) with respect to agent degree; solid line: best linear fit. Right:
Cumulated activity A(k) =

∑k
k′=1 a(k), best non-linear fit is k1.88 ±0.09.
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Rich-work-harder. This precise result is not new and tallies with existing studies
on degree-related PA (Newman, 2001a; Jeong et al., 2003). Nevertheless, we wish to
stress a more fundamental point concerning this kind of PA. Indeed, considerations
on agent activity lead us to question the usual underpinnings and justifications of
PA related to a monadic property. Regarding in particular degree-related PA, we
question the “rich-get-richer” metaphor describing rich, or well-connected agents
as more attractive than poorly connected agents, thus receiving more connections
and becoming even more connected.3

When considering the activity of agents with respect to k, that is, the number
of events in which they participate (here, the number of articles they co-author),
“rich” agents are proportionally more active than “poor” agents (Fig. 9.2), and
thus obviously encounter more interactions. It might thus well simply be that
richer agents work harder, not are more attractive; the underlying behavior linked
to preferential interaction being simply “proportional activity.”4

While formally equivalent from the viewpoint of PA measurement, the “rich-
get-richer” and “rich-work-harder” metaphors are not behaviorally equivalent. One
could choose to be blind to this phenomenon and keep an interaction propension
proportional to node degree. On the other hand, one could also prefer to consider
higher-degree nodes as more active, assuming instead that the number of links per
event is degree-independent and that agents do neither prefer, nor decide to interact
with famous, highly connected nodes; a hypothesis supported by the present em-
pirical results. These two viewpoints, while both consistent with the observed PA,
bear distinct implications for modeling — especially in event-based models. More
generally, such feature supports the idea that events, not links, are the right level
of modeling for social networks (Sec. 9.1.4) — with events reducing in some cases
to a dyadic interaction.

9.2.2 Homophilic PA

Homophily conveys the idea that agents prefer to interact with other resembling
agents. Here, we assess the extent to which agents are “homophilic” by using the
inter-agent semantic distance introduced in Sec. 8.4, thus using the socio-semantic
network. As we previously underlined, the point is not to focus on this particular
similarity measure: rather, we wish to show that simple properties non-related to
the strict social structure may also strongly influence interaction behavior in the
social network.

3“(...) the probability that a new actor will be cast with an established one is much higher than that the new
actor will be cast with other less-known actors” (Barabási & Albert, 1999).

4Moreover, if we assume that k is an accurate proxy for agent activity (i.e. a behavioral feature),
and if the number of coauthors does not depend on k (which is actually roughly the case in this data,
see Fig. 9.8), then observing a quasi-linear degree-related PA should not be surprising.
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Figure 9.3: Left: Homophilic interaction propension ĝ with respect to d ∈ D =
{d1, ..., d15} (thick solid line) and confidence interval for p < .05 (thin lines). The
y-axis is in log-scale. Right: Because of the two extremas it seems natural to
try to fit the graph using a third-degree polynomial: log(g(d)) = 4.7.10−3d3 −
9.6.10−2d2 + 2.2.10−1d − 1.76 (dashed line). Simpler is a linear fit on the log-log
graph: log(g(d)) = −0.29d (solid line). The original empirical data is plotted here
with dots — obviously, many other fitting functions are conceivable.

We obtain an empirical estimation of homophily with respect to this distance
by applying Eq. 9.5 on d, with I = 15. The results for ĝ are gathered on Fig. 9.3
and show that while agents favor interactions with slightly different agents (as
the initial increase suggests), they still very strongly prefer similar agents, as the
clearly decreasing trend indicates (sharp decrease from d4 to d13, with d4 being one
order of magnitude larger than d13 — note also that ĝ(d1) = 0 because no new link
appears for this distance value). Agents thus display semantic homophily, a fact
that fiercely advocates the necessity of taking semantic content into account in the
perspective of modeling such networks.

Correlation between degree and semantic distance In other words, the expo-
nential trend of ĝ suggests that scientists seem to choose collaborators most im-
portantly because they are sharing interests, and less because they are attracted
to well-connected colleagues, which besides actually seems to reflect agent activ-
ity. As underlined in Sec. 9.1.3, when building a model of such network based on
degree-related and homophilic PA, one has to check whether the two properties
are independent, i.e. whether or not a node of low degree is more or less likely
to be at a larger semantic distance of other nodes. It appears here that there is no
correlation between degree and semantic distance: for a given semantic distance
d, the probability of finding a couple of nodes including a node of degree k is the
same as it is for any value of d — see Fig. 9.4.
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Figure 9.4: Degree and semantic distance correlation estimated through ĉd(k) =
P (k|d)
P (k)

, plotted here for three different values of d: d ∈ {d5, d8, d11}, along with

y = 1.

9.2.3 Other properties

Specifying the list of properties is nevertheless a process driven by the real-world
situation and by the stylized facts the modeler aims at rebuilding and considers
relevant for morphogenesis. While we examined a reduced example of two sig-
nificant properties (node degree and semantic distance), measuring PA relatively
to other parameters could actually be very relevant as well — such as PA based
on social distance, common acquaintances, etc. However, the goal is also to ex-
hibit behaviorally credible as well as non-overlapping, non-correlated properties,
if possible. In this respect, neither common acquaintances nor social distance seem
to be good candidates.

Let us nonetheless examine social distance in more details. The social distance
l between two agents is the length of the shortest path linking them in the social
network, with l = ∞when no path exists.5 Obviously, l is also a dyadic parameter.
The rationale for considering this property is that one may expect that agents at a
short social distance are more likely to interact. The shorter the distance, the more
likely two agents are to get gathered in a common event: if they have at least one
common acquaintance (distance 2), if there is a pair of acquaintances of each agent
who know each other (distance 3), etc. Notice that agents at distance 1 are already
neighbors so, as regards our definition of a “new link”, there are no new links
between pairs at distance one.

The interaction propension h with respect to social distance is plotted on Fig. 9.5,
and reveals a strong PA towards “closer” agents. However, social distance is corre-

5The algorithm to compute shortest path length in an unweighted graph principally consists in
taking the first vertex, assigning it distance 0, then assigning distance 1 to all neighbors, taking
the list of all neighbors, assigning them a distance 2, etc. — this is a special version of Dijkstra’s
algorithm (1959) on an unweighted network.
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Figure 9.5: Social distance-related interaction propension ĥ with respect to l ∈
L = {1, 2, ..., 7, 8,∞} (thick solid line) and confidence interval for p < .05 (thin
lines). The y-axis is in log-scale. Inset: Fit of ĥ (empirical data, dots), using ei-
ther an affine function (log(ĥ(l)) = −.65 − .60l, solid line) or an inverse function
(log(ĥ(l)) = −4.7+4.6/l, dashed line). This second function, apparently better, sug-
gests that there is a limit in the decrease of the propension: after some distance,
the preference is the same for everybody.

lated at least to degree (Newman, 2001c) (nodes of degree 0 for instance are always
at an infinite distance of everyone in the social network) and in this respect a reduc-
tive parameter: two agents at distance 2 are certainly more likely to interact if they
have a lot of common acquaintances than just one, and social distance does not
distinguish between the two phenomena.6 By contrast, we are sure from Sec. 9.2.2
that degree and semantic distance are independent.

9.2.4 Concept-related PA

Yet, we may also wonder how concepts are chosen: for instance, like for social
interactions, are well-connected concepts used more often in articles, thus ‘inter-
acting’ with even more authors? It turns out that concepts are present with a fre-
quency proportional to their socio-semantic degree, which is the number of agents
who use them, therefore reflecting their popularity — see Fig. 9.6.

6In this respect, distances based on random walks could be a good compromise (Gaume, 2004),
as this takes into account the fact that two agents are connected through a more or less dense web of
common acquaintances in the broad sens (“proxemy”).
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Figure 9.6: Cumulated activity of concepts, with respect to their socio-semantic
degree kconcepts→agents. A non-linear fit yields Aconcepts(kc→a) ∝ kc→a

2.19, implying
a slightly supra-linear activity aconcepts(kc→a), i.e. ∝ kc→a

1.19.

9.3 Growth- and event-related parameters

These features yield an essential insight on how local interactions occur. Now, in
order to complete the description of the way the network grows, studying how
events are structured in terms of both authors and concepts is also a crucial in-
formation. Regularly, new articles are produced, involving on one side a certain
number of authors who have already authored a paper (old nodes) and possibly
a fraction of new authors (new nodes), and on the other side, concepts that the
authors bring in as well as new concepts.

9.3.1 Network growth

The first step is to determine the raw network growth, in terms of new nodes. How
many new events appear, how many new articles are written during each period?
Articles gather existing authors as well as new authors around concepts. Since we
consider the set of concepts to be fixed a priori, new nodes appear in the social
network only. The evolution of the size of the social network Nt depends on the
number of new nodes per period ∆N t, with Nt+1 = Nt + ∆N t. In turn, there is a
strong link between ∆N t and the number of articles nt, depending on the fraction
of new authors per article.

As we can see on Fig. 9.7, the growth of both ∆N t and nt is roughly linear
with time. For instance, we can approximate the evolution of n by nt+1 = nt + n+,
for a given arithmetic growth rate of n+; every period the number of new articles
increases by n+. In our case, n+ ' 96 (σ ' 28). ∆N and n seem to be linearly
correlated, suggesting that the proportion of new authors in all articles is stable
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Figure 9.7: For each period, number of articles nt (blue triangles), number of new
agents ∆N t (red stars), and total size of the social network at the beginning of
the period Nt (dark boxes). Inset: Comparison functions (∆N t)2/Nt (dark boxes),
nt

2/Nt (red stars) and ∆N t/nt (blue triangles), modulo a multiplicative constant.
All quantities appear to be constant, and linear fits yield respectively (∆N t)2 '
490Nt, n2

t ' 96.8Nt and ∆N t ' 2.25nt.

across periods.

9.3.2 Size of events

This leads us to study how articles are structured: in particular, how many agents
are gathered in an event, and how many of them are new nodes? As shown on
Fig. 9.8, the distribution of the number of agents per article appears to follow
roughly a geometric distribution.7 On the other hand, the weight of new authors
within articles obeys a distribution centered around three modes {0, 0.5, 1}, sug-
gesting that in most cases either (i) authors are all new, (ii) they are all old, or (iii)
half are new & half are old. Since this proportion is stable across periods, nt is a
good indicator of network growth: new articles appear and pull new authors into
the network — on average, articles gather 4.4 authors, among which 55% are new,
thus .55×4.4 = 2.42 new authors, which is close to the coefficient of the best linear
fit of ∆N with respect to n: ∆N ∼ 2.25n.

Since the size of the network is increased by ∆N in a period, and ∆N here
shows a linear behavior, N should exhibit a quadratic growth; which is confirmed
by comparing (∆N)2 to N as shown on Fig. 9.7 (the same goes for n2 vs. N ). The
fact that the number of articles per period linearly increases is however proper to

7In addition, the number of coauthors does not depend on node degree, suggesting that more
active agents are not working with a different number of collaborators when coauthoring an article
(see inset on Fig. 9.8-top): agent interactivity is independent of degree, ῑ(k) = ῑ.
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Figure 9.8: Top: Distribution of the size of events (black line), averaged on 8 peri-
ods 97-04, with confidence intervals for p < .05. The mean number of authors is 4.4
(σ = 3.1), and the best non-linear fit is ∝ exp−µn with µ = .36±.06 (red line). The
inset shows the mean number of coauthors with respect to degree k, relatively to
the global mean number of co-authors: in case of independence, this ratio equals 1.
Bottom: Proportion of new authors with respect to total authors, averaged on 7 pe-
riods (98–04) — the mean proportion is 0.55, but σ = .33 because of the tri-modal
distribution.
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the evolution of this empirical situation. The evolution of n and N is a consequence
of this — this is obviously not the case for all networks: if for instance this field of
research were to be abandoned, we would have a decrease of articles, not a linear
growth.

9.3.3 Exchange of concepts

Knowing the structure of articles, and how authors are gathered, we now inves-
tigate how concepts are chosen. The distribution of the number of concepts is
plotted on Fig. 9.9, and could be accurately approximated by a geometric distri-
bution. Besides, while old authors bring a certain proportion of their concepts,
some concepts are used for the first time: they do not belong to the intension of
authors. The distribution of the proportion of new concepts — new to the authors
— also shown on Fig. 9.9, makes it possible to distinguish concepts chosen within
the intension of authors, from new, unused ones. It has a single mode 0, but is on
the whole relatively flat.
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Figure 9.9: Top: Distributions of concepts per article — mean: 6.5, σ = 3.6. In the
inset, the solid line represent the best exponential fit,∝ e−µn with µ = 0.29. Bottom:
Distribution of the proportion of new concepts that none of the agents anteriorly
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Chapter 10

Towards a rebuilding model

10.1 Outline

To sum up, the empirical epistemic network of the field “zebrafish” could be de-
scribed as follows:

• power-law degree distributions from agents to agents and from agents to
concepts;

• a high-level of structurally equivalent groups, both because of a high bipar-
tite clustering coefficient and because of a particular EC structure observed
through GLs;

• a particular distribution of semantic distances;

• interaction behavior characterized by a preference to interact with similar,
well-connected agents (or, equivalently, who are more active), and to use
well-connected, popular concepts (or, equivalently, which are more ‘suit-
able’), in the precise manner outlined in Sec. 9.2;

• a quadratically growing social network because of a constant growth rate of
new authors and articles;

• quasi-geometrically distributed numbers of agents per article and concepts
per article, with a trimodal distribution for the proportion of new authors,
and a unimodal distribution for the proportion of new concepts.

In short, using the empirically-measured low-level parameters (composition of
articles and interaction preferences) we aim at designing a reconstruction model
able to reconstruct a high-level structure compatible with real-world stylized facts
(degree and semantic distance distributions, bipartite clustering and EC structure).

115
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To this end, three crucial modeling features are implemented: (i) event-based net-
work growth, (ii) co-evolution between agents and concepts, and (iii) realistic low-
level descriptions, especially regarding interactions.

Respecting PA in n-adic interactions Yet, event-based modeling introduces seri-
ous challenges towards accurately implementing PA. In classical dyadic-interaction-
based models, where events involve only two agents, it is utmost easy to choose
pairs of agents with respect to PA based on a set of uncorrelated properties, mon-
adic or dyadic. This category also covers models where agents make links to a
certain number of other agents on a peer-to-peer basis — for instance in the BA
model, where new nodes arrive and attach to a given number n of old nodes; this
can actually be considered as n dyadic interactions, not a n-adic interaction; at no
time sets of more than 2 nodes have to be composed to create links.

On the contrary in n-adic-interaction-based models, where interactions involve
n agents altogether and thus induce the addition of n-cliques (with links between all
pairs of agents), composing the set of agents while at the same time respecting inter-
action propensions for all [n(n− 1)/2] links could be an extremely tricky puzzle.
In any case, it now appears very dubious to base network growth on simple dyadic
interactions: n-adic interactions are simply everywhere. So, how to proceed in this
case? Two situations are to be distinguished:

• as regards PA based on a monadic property m, the picture is still easy if
ῑ is independent of m, since choosing agents with respect to f(m) or a(m)
is equivalent. Then agents can be chosen proportionally to a(m), which is
nothing else than P (E|m) and PA is obviously respected for all links between
pairs of agents.1 Otherwise, if ῑ depends on m, it would be hard to randomly
form events which respect both activities and interactivities for all kinds of
nodes.

In our case, we observed on Fig. 9.8 that the number of co-authors does not
depend on degree, i.e. ῑ(k) is a constant. In other words, agents make the
same number of links for every event they participate in, whatever their de-
gree is. This is consistent with the previous observation that the degree-
based propension f(k) has the same shape as the activity a(k) (Sec. 9.2.1).

• as regards PA based on a dyadic property d, the picture is quite different:
agents must be chosen so that all links between all pairs of agents respect the

1In particular, this is what necessarily happens with dyadic-interaction-based models (where
events always gather 2 agents), which still constitute the core of network growth models (cf. de-
tailed list in Sec. 7.2). Such models are credible in networks where events are by definition of size
two (e.g. peer-to-peer networks, Internet transmissions, phone calls). Then ῑ(m) always equals 1,
and agents can be indifferently chosen with respect to a propension (which is traditionally the case)
or to an activity, because ῑ(m) = 1.
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alleged dyadic PA. To make it simpler, our answer is to introduce an initial
node i (an “initiator”) which in turn chooses all other nodes with respect to
a dyadic PA.2 The choice of the initiator must obey criteria consistent with
interaction behavior; for instance, it needs to be chosen proportionally to
agent activity. Then, other nodes are chosen according to (i) activity and (ii)
dyadic PA with respect to the initiator.

Still, without any further assumption there is no guarantee that dyadic prop-
ensions are respected for links between these other nodes, i.e. between nodes
that do not involve the initiator — between agents around the initiator. In
our case, the fact that δ is a metric distance nonetheless warrants that the
semantic distance between any pair of nodes (x, y) remains similar to their
respective distance to i: δ(x, y) ≤ δ(i, x) + δ(i, y).

10.2 Design

We may now introduce a minimal event-based model of a coevolving epistemic
network. Events are articles, made of (i) agents, who are more or less active de-
pending on their degree k, and gather preferentially with respect to their interests
— the former being entirely independent of the latter, and (ii) concepts, which
are more or less popular, depending on their degree kconcepts→agents. The low-level
dynamics is thus as follows:

1. Creating events. nt articles are created at each period:

nt+1 = nt + n+ (10.1a)

n+ fixed to 100.3 This makes the number of events close to that of the real
network. The set of articles is denoted by At such that:

At = {At(i) | i ∈ {1, . . . , nt}}
At(i) = (St(i), Ct(i))

(10.1b)

where St(i) is the author set of the i-th article, and Ct(i) the concept set.

2Another solution could consist in quantifying propensions of n-adic interaction between n mem-
bers of a given event with respect to a n-dimensional vector of parameters — that is, a n-adic PA,
generalizing further the framework presented hitherto. Yet, this kind of measurement would really
not be convenient. On top of that, for most networks — even large ones — it may be rare to get
statistically significant estimations for a decent number of n-adic configurations.

3We have to keep in mind that n+ remains an exogenous parameter of the model, adapted to the
situation of a growing network for a growing community.



118 Ch. 10 – Towards a rebuilding model

2. Defining event sizes. Author set and concept set sizes follow geometric laws
respecting means observed on Fig. 9.8 and Fig. 9.9, respectively, i.e.:

|St(i)| G(1/ms)
|Ct(i)| G(1/mc)

(10.1c)

where ms (resp. mc) is the mean number of authors (resp. concepts) per
article.

3. Choosing authors. New agents within author sets are denoted by Sν
t (i) ⊂

St(i). Because of the tri-modal distribution (Fig. 9.8), St(i) contains either
only new authors, either only old authors, or equally old and new authors,
equiprobably. Thus,

|Sν
t (i)| =


[
P = 1

3

]
|St(i)|[

P = 1
3

] ⌊1
2
|St(i)|

⌋[
P = 1

3

]
0

(10.1d)

If St(i) > Sν
t (i), there is at least one old agent, and the initiator is randomly

chosen proportionally to her social network degree k. Then, other old agents
of St(i) \ Sν

t (i) are picked according to probability P (L|k, d), where k is the
degree of the agent to be chosen, and d the semantic distance between her
and the initiator — in accordance with empirical measurements, we have:4

P (L|k, d) = P (L|k)P (L|d)
P (L|k) ∝ k

P (L|d) ∝ exp(µd)
(10.1e)

with µ = −.29.

Finally, |Sν
t (i)| new nodes are created, and ultimately added to S.

4. Choosing concepts. New concepts are denoted by Cν
t (i) ⊂ Ct(i). By new, we

mean concepts that no old agent of St(i) uses. These concepts represent a
fixed proportion of the article concept set, that is,

|Cν
t (i)| = µc|Ct(i)| (10.1f)

where µc is the mean proportion of new concepts (see Fig. 9.9).

Thus, concepts are chosen:

4We consider that P (L|k = 0) = P (L|k = 1), which is in reasonable agreement with the data
(certainly choosing P (L|k = 0) = 0 would doom single agents to remain single for their whole life).
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Figure 10.1: Modeling an event by specifying article contents.

(i) for Ct(i) \ Cν
t (i), from the concept set of authors (∪s∈St(i)s

∧);

(ii) for Cν
t (i), from the whole concept set;

(iii) and for all, randomly proportionally to their degree kconcepts→agents (styl-
ization of Fig. 9.6).

5. Updating the network. When author and concept sets are defined (Fig. 10.1),
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the whole network is updated:

St+1 = St ∪
⋃

i∈{1,...,nt}

Sν
t (i)

RS
t+1 = RS

t ∪
⋃

i∈{1,...,nt}

{St(i)× St(i)}

RC
t+1 = RC

t ∪
⋃

i∈{1,...,nt}

{Ct(i)× Ct(i)}

Rt+1 = Rt ∪
⋃

i∈{1,...,nt}

{St(i)× Ct(i)}

(10.1g)

10.3 Results

We ran the model for 8 periods t ∈ {1, · · · , 8}, starting with an empty epistemic
network — in other words, the morphogenesis starts from scratch. Obviously, pe-
riods correspond to years. One hundred new articles were to appear during the
first period, with a growth rate of 100 articles per period per period: n1 = 100,
n+ = 100. We focus on networks obtained after simulations are completed for 8
periods, and we have a satisfying adequation for every stylized fact, both in shape
and in magnitude:

• Rebuilding network size. Simulated networks contain 10982 agents on average
(σ = 215, for fifteen runs), agreeing with empirical data.

• Rebuilding degree distributions. Results for all four degree distributions are
shown on Fig. 10.2, indicating a very good fit — in particular, power-law tails
have a similar exponent, with a shape which fits a log-normal distribution
similar to that of the empirical case.

• Rebuilding clustering coefficients. Clustering coefficients are accurately repro-
duced, as shown on Fig. 10.3.

• Rebuilding epistemic community structure. GLs have been computed for 250-
agents samples (see Fig. 10.4), following the protocol of Part I: distributions
of EC sizes are close to those of the real network, and exhibit the same effect
when compared to the “random case”.5 Semantic distances are also correctly
rebuilt, see Fig. 10.5.

5There is a slight deviation for high-size ECs, which are found in lower number in the simulations
than in the real network. This could actually be due to a selection bias where empirical data are
ex post selected data on a given community (the zebrafish field), where high-size communities are
gathered around paradigmatic words (“develop”) which the model only partly reproduces.
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Figure 10.2: Social, semantic and socio-semantic degree distributions. Simulation
results (black dots or thick line) globally fit the empirical data (blue thin line). For
instance, the exponent of a power-law fit for social network degree distribution is
γ = −3.10± .04, on average (empirical fit was γ = −3.39).
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Figure 10.3: Left: Simulated c3(k) (dots) compared to the empirical value (blue
solid line). Right: The same, for c4(k).
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Figure 10.4: Number of ECs with respect to agent set sizes, in GLs computed for
samples of 250 agents. Simulation results (thick black line) fit the empirical data
(thin blue line). We also computed random “rewired” cases, as we did in Part I
(keeping degree distributions on both sides, from agents to concepts and from
concepts to agents): as expected, they contain significantly less ECs, by one order
of magnitude (thin red line).
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Figure 10.5: Left: Simulated mean distribution of semantic distances on the whole
graph (dots) compared to original empirical data (blue line). Right: Same quanti-
ties, but computed only for the social neighborhood of each agent. Note the red
thin solid line, representing simulations not using homophily.
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10.4 Discussion

Hence, epistemic communities are produced by the co-evolution of agents and concepts.
Not only is the high-level structure accurately reconstructed by our model, but
low-level dynamics are consistent as well — this is a not a minor point: rebuild-
ing high-level phenomena remains dubious if the low-level dynamics is incorrect.
Truthfulness of descriptions must reach the higher level as well as the lower level.
In any case, we may still wonder what weight some of our hypotheses bear to-
wards the apparition of high-level phenomena: is our model a minimal model as
regards the stylized facts we selected?

In particular, consider basic event-based models for social networks — which
have become popular very recently among a few other authors as well (Ramasco
et al., 2004; Guimera et al., 2005; Peltomaki & Alava, 2005) — that simply rest on
n-adic events instead of dyadic interactions and that do not even specify any kind
of PA. Yet, these models lead to scale-free distributions and high one-mode clus-
tering coefficients. These results suggest that PA is not required to rebuild degree
distributions and c3, by contrast to dyadic-interaction-based models (such as BA
model).

Recall that our model features (i) event-based modeling, (ii-a) degree-related
preferential attachment (or activity) for the choice of agents and (ii-b) for concepts,
and (iii) homophily of agents. Are the high-level stylized facts still reproduced
if we loosen some of these hypotheses? Since many combinations of simplified
models are envisageable, we only examine what happens when relaxing one hy-
pothesis at a time; and sum up the results hereafter.

1. Relaxing social-degree-based PA. Only agent degree distributions change (from
agents to agents and from agents to concepts), with a different power-law fit
exponent (γ = 2.48 for the social network without this kind of PA, vs. 3.39
with it — the degree distribution is thus “flatter”, which is consistant with
the suppression of the accumulative effect of this PA).

2. Relaxing semantic-degree-based PA. Here, reconstruction of both EC structure
and semantic distance distribution fails. The effect of concept popularity
seems central to the emergence of epistemic communities.

3. Relaxing homophily-based PA. This is certainly the most surprising result: the
only change concerns the semantic distance distribution for the social neigh-
borhood (see Fig. 10.5-right) — yet, this change is slim, especially as regards
a feature that has such a heterogeneous impact (recall that the homophilic
propension is exponential).

4. Relaxing event-based modeling. This hypothesis is at the core of the model, so
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revisiting it may require to strongly reshape the whole model. Let us only fix
the fact that |St(i)| = 2, which amounts to classical dyadic interactions — all
other mechanisms remain unchanged. Then, degree distributions do not en-
joy the log-normal shape and are only scale-free; which is unsurprising from
(Barabási & Albert, 1999).6 Also, clustering coefficients are not reproduced
(which is also unsurprising (Ramasco et al., 2004) and consistant with the fact
that a high c3 is simply due to clique addition). Thus, relaxing event-based
modeling creates empirical inconsistancies even for the simplest topological
criteria.

6Yet, any constant number of authors per article (|St(i)| = c) also leads to a very particular degree
distribution, contrarily to what (Guimera et al., 2005) found. For other values of c > 2, by definition
social network degree distributions are likely to be biased around multiples of (c − 1) — especially
for low degrees.



Conclusion of Part II

The main achievement of this part has been to micro-found the particular com-
munity structure that we highlighted in Part I. We investigated the formation of
an emerging scientific community, that of the “zebrafish”, considered as a social
process of knowledge building and community organization. Using real-world
observations, we asked whether we could in turn reconstruct artificially the evo-
lution of this scientific field, through the lens of selected stylized facts deemed
relevant for this epistemological task.

We assumed that modeling agents co-evolving with concepts was enough to
micro-found the evolution of this social complex system. In other words, the so-
cial constitution, arrangement, configuration, manipulation and reconfiguration
of concepts was assumed to account for most of the scientific field structure. We
had thus to design a low-level dynamics λ consistant with empirical data, and
adequately rebuilding ηe, through P . To this end, after outlining the kind of styl-
ized facts to be reconstructed, we needed to create tools enabling the estimation,
from past data, of the interaction and growth processes at work in the epistemic
network. Only thereafter could we hope for a realistic, descriptive model of the
dynamic co-evolution of agents and concepts, and the resulting structure.

We have thus argued for an empirical stance in designing model hypotheses,
although this attitude can often prohibit analytical solutions and compel to the
use of simulation-based proofs. In fine, introducing credible empirically-based hy-
potheses would help attract really more social scientists into this promising field.
Social scientists are usually not seeking normative models. More specifically, in
the search for hypotheses eager to explain a given “high-level” phenomenon, sci-
entists have to make inductions on low-level features which reconstruct the phe-
nomenon. We suggest that it is eventually essential to know whether the alleged
low-level dynamics is empirically grounded too — even if the model reproduces
the desired stylized facts, and even if the hypotheses do not look ad-hoc (like for
instance introducing scale-free preferences to rebuild scale-free networks). Nor-
mative models are certainly nice, but not necessarily useful towards a descriptive
task.
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In particular, quantifying interaction processes plays here a crucial role — het-
erogenous interaction behaviors are indeed the cornerstone of many recent social
network formation models. Preferential attachment (PA), which is the common
way of designating this heterogeneity, is obviously a robust method to avoid the
classical random graph model. PA was established by the success of a pioneer
model (Barabási & Albert, 1999) rebuilding a major stylized fact of empirical net-
works, the scale-free degree distribution. However, while it has subsequently been
widely used, generally few authors attempt to check or quantify the rather arbi-
trary assumptions on PA. Therefore, we designed measurement tools yielding a
comprehensive description of interaction behaviors with respect to any kind of
property, structural or not. In addition to epistemic networks, this framework
could also be easily applied to any other kind of network, especially non-growing
networks — likewise, a whole class of empirically-based morphogenesis models
can be designed (Boguna & Pastor-Satorras, 2003; Cohendet et al., 2003). This kind
of hindsight on the notion and status of PA should be useful even for normative
models.

The final success of the reconstruction gives full credit to the claim of the present
thesis: the structure of knowledge communities is at least produced by the co-
evolution of agents and concepts. Yet, we also argue that such co-evolution may
still depend on exogenous parameters. We can indeed imagine that various low-
level measurements (size of groups, interaction behavior, growth rate, etc.) would
be different in other research groups, other epistemic areas, or other eras. Take for
instance the growth of the field: how comes that there is such an interest in the ze-
brafish? Practical reasons can be put forward: it is a translucent vertebrate, quickly
developing, sufficiently close to human, very helpful for many more fields other
than embryology. But all of this is proper to the contingent nature of the zebrafish.
Later, a cure for cancer could be found from the study of the zebrafish, likely to
pull in a large number of scientists; or not: this discovery depends on unpredictable
properties of the zebrafish itself. We strongly doubt that these features could be
endogenized in any model.

More generally, the uncertainty on novelty and new knowledge (new concepts
as well as new usage of old concepts) appearing in the social complex system is
not truth-related uncertainty: it is not something which is already-known, which
may happen or not, and which is easily substitutable by a probability. Rather, it
is a radically different uncertainty, one on the ontology (Lane & Maxfield, 2005):
“what ontology will agents dispose of in the future?” Epistemologists have long
been interested in exploring the justification of new ideas, but few attempted to
explain how discoveries occur. In such cases, random intuition (“lucky guesses”)
and induction are often called on. Some authors on the contrary argue that the
discovery of new knowledge is rooted in already-existing knowledge (Gigeren-
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zer, 2003): novel reinterpretations of existing notions and tools have an innovative
feedback onto theories and concepts. But here too, we cannot predict the way
tools will be reinterpreted. In both situations, we still have to cope with ontolog-
ical irreducibility: a model cannot express and yield anything newer than what is
already specified by the language and the grammar of the model, which are closed
(Chavalarias, 2004, p.257).

In any case, we must therefore keep in mind that real-world epistemic net-
works are not closed. In our model, we decided to keep some things exogenous:
we had for instance a fixed growth rate n+ and a fixed set of a priori equivalent
concepts C. In reality, new topics can arrive in the system — either through items
that are not represented in the model (like conferences, news (Gruhl et al., 2004)),
underlining the problem of boundary specification (Laumann et al., 1989); or from
phenomena that are simply unpredictable (like the cure for cancer, cf. supra), for
which modeling is most likely to fail. Let us mention in particular two modeling
methods that could be proposed to account for new knowledge creation: (i) inno-
vation is modeled by a random probabilistic increase in the amount of knowledge,
which is thereby assumed to be quantifiable, monotonic, and whose nature is fixed
(e.g. in (Cowan et al., 2002)); (ii) innovation is a generative process, producing new
items from already-existing items; for instance Lane (1993) proposed λ-calculus as
a way to generate truly novel objects, generally thanks to a chaotic process — such
generative processes however could hardly be considered realistic, even if they are
indeed undecidable and unpredictable, hence compatible with ontological uncer-
tainty (which probabilistic models are not).

Hence and more broadly, the potential dependence on undecidable exogenous
parameters leads us to moderate the claim of our thesis: whereas the reconstruc-
tion has obviously proven to be a success, within a given time-period and all its
particularities, it is nonetheless likely that other processes in which the epistemic net-
work is immerged could also play a significant role. As such, under the provision
that such parameters are stable for the considered time-scale, we clearly demon-
strated that the reconstruction of the dynamics of a social complex system is within
reach.





Part III

Coevolution, Emergence,
Stigmergence

Summary of Part III

In this part, we make an epistemological point that provides a significant in-
sight on how to rebuild a social complex system. After detailing different
attitudes towards appraising the relationships between levels of description,
we argue that distinct levels are merely distinct observations on a process. We
then present implications on reconstruction methodology and complex sys-
tem modeling, and particularly emphasize the role of level design in making
sound distinctions among objects. We distinguish the special case of systems
of agents producing artefacts which in turn have an effect onto them, a fea-
ture shared by many social systems.





Introduction of Part III

“(...) because I know that you are a part of Humanity, of which I am also a part, and that you
partly take part in the part of something which is also a part and of which I am also in part
a part, together with all the particles and parts of parts, of parts, of parts, of parts, of parts...
Help! Oh, confounded parts! Oh, bloodthirsty, nightmarish parts, you’ve grabbed me once
again, is there no escaping you, hah, where can I find shelter, what am I to do?”

Ferdydurke, Witold Gombrowicz.

In this final part, we wish to make an epistemological point that should provide a
crucial methodological insight on social complex system modeling. So far, we have
proven that epistemic networks are the result of low-level interactions of agents
co-evolving with concepts. To do so, we have appraised this socio-semantic com-
plex system both (i) starting from disciplines & community structure, and looking
at how this may be expressed in terms of agents and concepts, exhibiting a valid
“P” (Part I); and (ii) using low-level dynamics of epistemic networks to reconstruct
high-level phenomena (Part II). As such, we filled the explanatory gap between the
lower level of agents & concepts and the higher level of epistemological descrip-
tions. We now wish to investigate the epistemology of our approach, and suggest
broader implications on social complex system modeling. In order to do so, we
will focus on the status of the different levels of description, the subsequent rela-
tionships they may entertain, and the modeling methodology required to give an
account of these relationships. We will argue that modeling social complex sys-
tems tends to require the introduction of co-evolutive frameworks at the lower
level of the kind we presented here. More generally, we argue that some high-
level phenomena cannot be explained without a fundamental viewpoint change in
not only low-level dynamics but also in the design of low-level objects themselves.
In other words, it may be important to reconsider (and sometimes differentiate)
objects at a given level in order to achieve a successful reconstruction. Emphasiz-
ing level design is particularly insightful in situations where structures created by a
level exhibit an efficient causal feedback on this level. Surprisingly, these cases do
not involve downward causation, but simply relate to causation of a priori distinct
objects onto each other, or coevolution of phenomena.

The outline of this part is as follows: in Chap. 11 we suggest that distinct lev-

131



132

els, considered as phenomena of a unique underlying process, only exist to the
observer and as such may still yield overlapping, redundant and thus correlated
information about the process (Bonabeau & Dessalles, 1997; Gershenson & Hey-
lighen, 2003; Bitbol, 2005). Chapter 12 presents meaningful implications on model-
ing, and highlights a few yet essential methodological points required for complex
system modeling. In Chapter 13, we support the idea that while levels are often
simply different aspects of a process, objects could still be usefully differentiated
to describe certain kinds of causality between phenomena: for instance, agents
produce artifacts that in turn influence them, with no downward causation. The
notion of “emergence” is consequently enriched by the concept of “stigmergence”
of artifacts. We conclude that co-evolution is a central feature of socio-semantic
complex systems.



Chapter 11

Appraising levels

The concern of any scientific field is to describe certain kinds of objects, along with
the regularities that govern them. The global picture of scientific research is subse-
quently made of disciplines focused on particular levels of description: physics is
concerned with fields and particles, biology with cells and living organisms, social
sciences with agents and institutions. Often, a level can be considered to “rely on”
more fundamental levels — for instance, agents are living organisms, organisms
are “made of” cells, cells are “made of” molecules. These notions usually translate
in terms of “whole/part” relationships.

Modern science, and complex system science in particular, has also been tak-
ing this conception in a reverse, compositionalist direction: items at some level
are organized systemically and compose higher-level objects — higher in size, be-
cause they are made of at least one entity and, often, higher in inertia (i.e. slower
time-scale). For example, molecules build up cells, cells build up organisms, which
build up agents, and so on. Like our epistemic network model, an important as-
sociated challenge is the reconstruction of high-level phenomena through the iter-
ated, cumulated interplay of low-level objects: complex scientists dream to rebuild
high-level descriptions from low-level ones. Thus they would bridge explanatory
gaps between levels and cancel out separations between scientific fields. To this
end, investigating the nature of levels of description becomes a crucial topic —
especially addressing the two following key questions: (i) how to appraise differ-
ent levels? (ii) how to assess their links and potential mutual influence upon each
other? We also indicate why this attitude leads to reconsider the notions of upward
and downward causation — namely, a level having a causally efficient influence
on other levels.
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11.1 Accounting for levels

In order to appraise the nature of levels, as mentioned above, several attitudes
are available. Classical answers include dualism, reductionism and, as a tentative
bridge between these two extremes, emergentism, where higher levels are sup-
posed to emerge from lower levels. Here, we review these stances and present
their caveats, notably dismissing the idea that levels exist as entities, and suggest-
ing instead that they are merely observations of a single process — as such, distinct
aspects, various phenomena of a same underlying “x.”

Let us recall the two most classical positions that could be first suggested:

Definition 12 (Dualism). Dualism is a position for which different levels correspond to
different entities, and have a proper reality by themselves.

Thus in the dualist position, different levels must be appraised through different
means and enjoy distinct realms. Causality happens at all levels. Even if one can
for instance describe the cells that compose the body, the body is supposed to
enjoy a substantial reality by itself that cannot be explained in terms of the lower
level, and accordingly a proper causal efficiency — this amounts, for instance, to
vitalism.

Definition 13 (Reductionism). Reductionism states that all phenomena can be explained,
computed and rebuilded from the lower level, up to higher levels.

Opposite to dualism, the reductionist viewpoint denies that higher levels exist by
themselves: they are at best convenient macroscopic descriptions. Here, only the
lower level enjoys reality and causal efficiency. This eventually amounts to physi-
calism: physical entities and laws are sufficient to explain the entire world, at least
in theory.1

11.2 Emergentism

These two conflicting positions nevertheless exhibit some weaknesses. Apart from
its unconvincing non-materialistic aspects (Papineau, 2001), the dualist viewpoint
eventually amounts to pluralism, with as many ontologies as there are levels.
Worse, it is in fact a subjective pluralism, because conceptions of levels mostly de-
pend on a quite subjective if not arbitrary ontology.2 How could levels created by

1(Bickhard & Campbell, 2000) “Everything else is epiphenomenal to that, and can be eliminatively re-
duced to it — perhaps with the caveat of the cognitive limitations of human beings to handle the complexities
required. In this cognitive view, higher levels are necessary considerations only because of their relative cogni-
tive simplicity for humans, not for any metaphysical or even physical reasons.”

2As Emmeche et al. (2000) observe, “Our methods for making such distinctions [of primary levels] are
of course dependent on the historical development of scientific theories and disciplines.”
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scientists be real entities, especially when considering the multiplicity of levels at
stake (physical, chemical, biological, individual, social, etc.)?

On the other hand, it is unclear whether reductionism allows the rebuilding
of the whole world and its different levels. In this respect, it appears sometimes
unlikely that theories on a given level could be reduced to an applied, iterated
version of lower-level theories (Anderson, 1972; Laughlin & Pines, 2000; Lane,
2005). Practical reasons (computing the behavior of more than a handful of par-
ticles proves quickly to be impossible) as well as less practical reasons (such as
Anderson’s example of nuclei whose spherical shape is due to an infinite approx-
imation of lower-level particle properties) suggest that “the Theory of Everything is
not even remotely a theory of every thing” (Laughlin & Pines, 2000).

While the dualist position is based on the a priori existence of several levels,
the reductionist position actually eliminates the higher levels to the benefit of the
lowest level.3 These two stances are strikingly contradictory, and the tension is
particularly disturbing when one dismisses dualism but still wants to consider
higher levels to be irreducible, granting them some reality.

Bridging the gap The emergentist position is an attempt to reconcile both views,
by assuming emergence. The point is to bridge the possible failures of reductionism:
the higher level is not reducible, the whole is more than the sum of its parts, even
in theory; but it is physically grounded so it needs to emerge from the lower level.
No dualism is supposed a priori, but the cumulated, aggregated action of small
objects somehow leads to the emergence of novel higher-level objects that are not
reducible to lower-level objects. To make things clearer, we adopt the following
definition of emergentism:

Definition 14 (Emergentism). Emergentism assumes that low-level phenomena are the
cause of high-level phenomena, yet in turn not necessarily reducible to low-level phenom-
ena.

The resulting high-level and low-level phenomena then come to influence each
other through causally efficient mechanisms. This classical picture of emergence dis-
tinguishes the interacting objects (physical phenomena at the lower-level) from the
emerging objects (emergent structures at the higher-level). Yet providing the lower
level with causally efficient properties onto the higher level induces two possibly
unsatisfactory consequences: either the higher-level is an epiphenomenon (a mere
consequence of low-level phenomena, which cannot cause anything itself), or it
enjoys causal properties as well (which amounts to downward causation).

3Some call this “eliminativist physicalism”, because processes are supposed to be fully character-
ized by the lowest physical level only.



136 Ch. 11 – Appraising levels

In the first case indeed when causation goes only upwards, some authors un-
derline the epiphomenality of higher-level phenomena (Kim, 1999; Campbell &
Bickhard, 2001). The argument is fundamentally as follows: denoting lower-level
states by “L” and higher-level states by “H”, at the lower level L causes L′, how-
ever at the same time L causes H and L′ causes H ′; so why would we need H

and H ′ for? These two properties seem in fact merely epiphenomenal. Thus, “[i]f
emergent properties exist, they are causally, and hence explanatorily, inert and therefore
largely useless for the purposes of causal/explanatory theories” (Kim, 1999).

But then, epiphenomenality does not differ much from reductionism, and ac-
cording to Bitbol (2005), “emergentists are inclined to require productive causal powers
of the emergent properties on the basic properties.” In other words, the whole may
impose constraints onto the parts. In such a framework, where both upward and
downward causations are present, interactions of low-level items (in L) create a
higher-level object (in H), which in turn, is supposed to have an influence on the
lower-level items (L → H → L′). Hence causation goes downwards too, and H

adds something to the lower-level. To Donald Campbell, who introduced the term
‘downward causation’, “All processes at the lower levels of a hierarchy are restrained
by and act in conformity to the laws of the higher levels” (Campbell, 1974a).4 In other
words, the whole influences the part through top-down constraints.

Definition 15 (Downward causation). Downward causation corresponds to the fact
that a system of objects which integrates a larger whole is in turn affected by the larger
whole.

For instance, cell interactions produce some emergent psychological feature
(e.g. stress) which in turn induces biological changes (blood pressure increase).
Similarly, consciousness is considered causally efficacious on the activity of the
body (Thompson & Varela, 2001).

Although widely spread, this conception could be surprising: indeed, can a
lower level create a higher level which in turn influences the lower level? Accord-
ingly, detractors of downward causation argue essentially that it is redundant and,
even worse, that it violates the causal rules defining the lower level; hence, they
suggest, a critically erroneous principle — see e.g. (Emmeche et al., 2000).

4More precisely, Campbell illustrates this idea as follows: “The organisational levels of molecule,
cell, tissue, organ, organism, breeding population, species, in some instances social system (...) are
accepted as factual realities rather than as arbitrary conveniences of classification, with each of the higher
orders organising the real units of the lower level.”
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11.3 What levels are not

Basically, each one of the three positions posits different assumptions on the status
of levels, considering higher levels to exist:

(i) a priori — dualism;

(ii) a posteriori — emergentism;

(iii) only at the bottom — reductionism.

The two first options assume the objective existence of the higher level. Let
us not elaborate on strict dualism. So what about emergent levels? Often, emer-
gent properties are called on when a system exhibits highly unexpected and/or
unpredictable high-level properties.5 Emergentism here underscores the potential
failure of reductionism in manipulating high-level properties. Granting an inde-
pendent objective status to the higher level makes it possible to develop assertions
and predictions on it (and particularly on what is considered irreducible or unpre-
dictable) while still grounding the system into low-level objects. Using downward
causation, it is even possible to cast back the higher level into the lower level.

But as Emmeche et al. (2000) put it, “it is unclear what the ramifications are of
assuming that a physical cause could have an effect which was not physical.” Arguing
that emergent properties are hard to predict from underlying properties is not a
reason to abandon a strictly reductionist viewpoint. The reason why the reduc-
tionist approach still fails in practice could simply be that we miss tools, cognitive
or formal, to observe and predict high-level phenomena from the low-level ones.
One must tell whether there is a real emergence of irreducible novel objects or not
— not only that these new properties are a convenient descriptive and predictive
tool. In other words, emergentists must explain why the fact that “each level can
require a whole new conceptual structure” (Anderson, 1972) is not simply epistemolog-
ical. In this respect, considering temperature, which is simply an instrument and
enjoys no reality by itself, Bitbol (2005) notices that “[it] looks as if it were a new
and autonomous property, but it is only relative to the thermometric technique”. Yet, he
underlines that even in the particular case of property fusion in quantum mechan-
ics — low-level properties merge to yield an upper-level property, which in turn

5A common definition of ‘emergent’ is precisely “unpredictable from the basic laws”. As Shal-
izi (2001) notes, “to call something emergent is therefore not to say anything about the property at all, but
merely to make a confession of scientific and mathematical incompetence.” Similarly, an easily deducible
macroscopic phenomenon is rarely considered “emergent”: if the low-level mechanism at the origin
of the high-level property is clearly explainable (with linear dynamic systems being the limit case),
its status as an emergent feature is often weakened or considered trivial (again, particularly in the
case of linearity (Bickhard & Campbell, 2000)).
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forms different lower-level properties — there is no objective reality of the higher-
level: “in the upward direction, fusion of potential experimental information occurs; not
fusion of actual property.”

Now, the assumption of the existence of a lowest level, which makes the core
of reductionism, is problematic as well. This point has been indeed recently chal-
lenged by Bickhard & Campbell (2000) who deny any supremacy to the lower
level: “there is no ‘bottoming out’ level in quantum field theory — it is patterns of process
all the way down, and all the way up.” For reductionism lies on the hypothesis that
only higher levels are decomposable into smaller objects, a decomposition which
ultimately reaches physical items governed by physical laws; yet what happens if
patterning occurs at all levels? If we cannot consider the lowest level to involve ele-
mentary properties, then Bitbol suggests that “no level can claim for itself the privilege
of being for sure the ultimate one; ultimate and monadic.”6

11.4 Observational reality of levels

11.4.1 Different modes of access

To summarize, all levels, both higher and lower, seem to vanish as substantial ob-
jects — as Bitbol puts it, “the physical process may have no substantial roof of emergent
properties, it has no substantial ground of elementary properties either.” This apparently
yields a tricky paradoxical situation, where objects and hence causality are bound
to have no shelter anymore, while things still happen. To solve this, suggesting in-
stead that properties at any level are the result of an observational operation proves
to be a unifying and compelling answer (Bonabeau & Dessalles, 1997; Gershenson
& Heylighen, 2003; Bitbol, 2005). Notably, focusing on quantum property fusion,
Bitbol stresses the fact that “[w]hat emerges is only a new mode of possible cognitive
relation between the microscopic environment and the available range of experimental de-
vices.”

This remark is crucial and can obviously be extended to any kind of phe-
nomenon. The whole point is to see that properties are defined only under a
given instrumental apparatus, and that even lowest-level properties are always
appraised through an “instrumental intervention.” Thus, we have to consider that
there are different modes of access to a same process, not different levels that co-
exist. In other words, there is a dual mode of instrumental access, not a duality
of entities. In this view, we can have different kinds of properties (microscopic or

6This viewpoint is already present in (Campbell, 1974b): “For a weak microscope, we assume that the
homogeneous texture provided at its limit of resolution is a function of those limits, not an attribute of reality.
We do this because through more powerful scopes this homogeneity becomes differentiated. By analogy, we
extend this assumption even to the most powerful scope.”
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Figure 11.1: Distinct, partially overlapping aspects of an underlying process x.

macroscopic, monadic or relational) leading to the introduction (by the observer)
of several kinds of related objects and phenomena — and accordingly have differ-
ent modes of access to a real process, by operating on any level. Thus different
ways to appraise properties emerge, not levels.

Therefore, Bitbol stresses out that “[t]here may be emergence without emergent
properties. Not asymmetric emergence of high-level properties out of basic properties, but
symmetrical co-emergence of microscopic low-level features and high level behavior.” As
such, considering the co-emergence of several modes of observation is not a phys-
icalist position, for it does not assume a lowest physical level, yet it is not dualist
as well, because it does not imply dualist entities but simply the simultaneous ob-
servation of a unique process at different levels. Here levels have no consistence,
rather they are observational: in this respect, one may say that they exist a observa-
tori. By contrast with the other trends presented so far, we will call this position
“observationism.”

An underlying process “x” is thus appraised through observations, which are
phenomena in the etymological sense: things that appear. Each of the observed as-
pects of a process can be considered as a partial projection pi(x) of the underlying
“x.” Each pi(x) yields possibly overlapping information on x: the mean kinetic
energy of a perfect gas gives indeed the same information as does a thermome-
ter. But the thermometer is able to provide the temperature of fluids and solids as
well — the thermometer, as a high-level observation instrument, yields informa-
tion which obviously the mean kinetic energy cannot render. More generally, it is
dubious that we could exhibit a set of instruments {p1, p2, ...} that would wholly
characterize the process x, in the sense that any observation concerning x could
be deduced from this minimal set of instruments, even infinite (i.e., we suggest it is
impossible to find a covering of x with pi, see Fig. 11.1).
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11.4.2 Illustrations

This conception is instructive in situations involving iterated actions producing
an emergent structure that in turn influences individual action, where downward
causation is often supposed to play a key role. Let us consider first waves “emerg-
ing” from water: in this case water molecules move by obeying strictly mechanical
laws at the lower level. Yet at a higher level a wave emerges, which in turn like
an independent object seems to have a downward causal effect on the molecules
that participate in the wave by draining them into a high-level dynamics that in-
dividual molecules cannot resist. Rather, it is a phenomenon which lends itself
to dual-mode appraisal, either at the high-level of the wave or at the lower-level
of molecules. Local laws applying to the lower-level are not to be modified, and
molecule positions are consistant with what is to be observed at a higher-level.
Looking at the wave however provides only information about low-level phenom-
ena (position, movement of water molecules).

The same goes with Schelling’s (1971) celebrated model of segregated neigh-
borhood formation. In this model, agents are placed on a grid and assigned a
random color, blue or red. They behave according to a simple and unique rule
consisting in changing locations in order to be surrounded by at least a certain
fraction α of same-color agents. When running the model, for a sufficient value
of α, large areas of same-color agents appear, as such a global pattern emerging
from strictly local rules. Downward causation seems at work when “emerging”
patterns in turn influence agents who join segregated neighborhoods. But this is
simply apparent: the agent does not choose ‘consciously’ to join segregated neigh-
borhoods. Her behavioral and causal rules are the same as before and need not be
changed to observe an emergent macro-level behavior consisting of “agents going
to same-color neighborhood.”

In the case of epistemic networks, the fact that higher-level epistemic commu-
nities appear bears no influence as such on agents: agents are still characterized by
their low-level behavior. Appraising differently the process through a high-level
instrument — Galois lattices — reveals high-level patterns. Agents could even ap-
pear to join epistemic communities. But in the definition of our model, agents are
not explicitly influenced by epistemic communities. Other examples include norm
emergence from repeated games between agents (Epstein & Axtell, 1996; Axtell
et al., 2001), network formation from repeated agent-based interactions (Skyrms &
Pemantle, 2000), to cite a few. For every of these cases, high-level phenomena may
appear to have a backward effect on the behavior of lower-level objects. Instead,
the higher level simply yields large-scale information on the lower-level, but it
does not induce a modification of the behavior itself, which remains unchanged.
In other words, observing the higher-level provides us with knowledge on the out-



Observational reality of levels 141

come of low-level behavior. Therefore, with respect to lower levels, higher levels
are often macroscopic and partially informative observations — possibly express-
ible as a “pattern” of low-level items.





Chapter 12

Complex system modeling

Even when adopting such an observational position, the way of linking levels re-
mains an open question — at least for the modeller. What are the implications of
these philosophical considerations on modeling phenomena? How should mod-
els deal with different levels of access? Before suggesting answers, we need first to
detail more extensively the operational motives of reductionists and emergentists
and, by doing so, recall some goals and methods of complex system science.

12.1 Complexity and reconstruction

12.1.1 Objectives

Basically, complex system science craves for explaining high-level phenomena by
playing with lower level objects. More precisely, with the help of low-level descrip-
tions, it aims at (i) checking whether some already-known high-level descriptions
are properly reconstructed (validation of higher-level phenomena), or (ii) discover-
ing new high-level descriptions (new unexpected and potentially counterintuitive
phenomena).

This attitude has two main epistemological advantages over strictly high-level
descriptions: it follows Occam’s razor law and, subsequently and more impor-
tantly, it works with simpler and, often, more reliable mechanisms. Simplicity means
that objects are governed by more simple laws, while reliability here qualifies
mechanisms that enjoy a more accurate and stable experimental validation.1 This
is most of the motto of complex system science: rebuild complex high-level behav-
ior based on simple and well-understood “atoms.”

1Some other epistemological benefits of this approach can be found in more details in (Bonabeau,
2002) for example.
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12.1.2 Commutative decomposition

In order to win the challenge of reconstruction, one could first adopt a reduction-
ist version of the paradigm of complexity, modeling only low-level items. This
approach discards theories of the higher level to the benefit of “micro-founded”
science — as such, it discards all impermeability between scientific fields. For in-
stance, instead of using laws and theories of psychology, one may be willing to
rebuild them by iterating the activity of neurons, which compose here the lower
level, governed by biological laws — and this is a current issue in computational
neuroscience, e.g. for explaining adaptive change capabilities from neural plastic-
ity (Destexhe & Marder, 2004).

Here, it is necessary to characterize how lower-level properties translate into
higher-level properties by a projection function P (or composition function) ex-
pressing the higher-level H from the lower-level L; that is, P (L) = H . Without P ,
how would somebody playing with low-level items expect to say anything about
high-level phenomena H? The definition of P is however not sufficient to achieve
successful reconstruction: low-level dynamics observed through P must also be
consistent with higher-level dynamics. Dynamical consistence means that a se-
quence of low-level states projected by P corresponds to a valid sequence of high-
level states. More formally,2 if we denote by λ (resp. η) the transfer function of a
low-level state L (resp. high-level state H) to another one L′ (resp. H ′) — in short,
λ(L) = L′, η(H) = H ′ — this means that P must form a commutative diagram with
λ and η so that, as suggested in the general introduction (Rueger, 2000; Nilsson,
2004; Turner & Stepney, 2005):

P ◦ λ = η ◦ P (12.1)

Indeed, the left side of Eq. 12.1 is the high-level result of a low-level dynamics,
while the right side yields the outcome of a high-level dynamics. The aim of the
reconstruction is to equate the latter with the former.

Hence commutativity is the cornerstone of the process; should this property
not be verified, reconstruction would fail. How to check it? Since P is a definition
and λ is designed by the modeler, η is truly the benchmark of the reconstruction.
There are nevertheless two ways of considering η: (i) either η stems from a priori
knowledge of higher-level theories (e.g., “can we rebuild these Zipf laws arising in
that context?”); (ii) or η is discovered a posteriori from the model (e.g. “what unex-
pected phenomena may emerge? are they empirically valid?”). Verifying Eq. 12.1
in the first case refers to a successful reduction, while in second case it induces

2Although formulated in a specific way, this formalism could be easily transposed for a wide
range of kinds of dynamics, discrete or continuous.
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new knowledge for the scientist, because the challenge is to exhibit a solution η̄ of
Eq. 12.1, then to test this theoretical solution against reality.3

12.1.3 Reductionism failure

Nevertheless, Eq. 12.1 should hold in any case. Sometimes verifying it works per-
fectly, thanks to an analytical proof — such as in the famous case of temperature
of gases: “Physics can make it intelligible that mean kinetic energy of the molecules of
a gas plays exactly [the] causal role [that temperature plays]” (Beckermann, 2001); the
causal role of gas temperature has been reduced to physical phenomena (molecu-
lar interactions). Sometimes it works less perfectly, because analytical resolution
is hardly tractable; here only proofs on statistically sufficient simulation sets are
available, using several initial states L. This is a somewhat positivist attitude, but
as Epstein (2005) notices, each simulation is nonetheless a proof on a particular
case, so the reconstruction may be considered a success as long as Eq. 12.1 holds
true for statistically enough particular cases.

But sometimes it just doesn’t work: commutativity does not hold. For we as-
sume η to be empirically fixed, the failure must be due either to λ or to P . Suppose
that we stick to the fact that H is always correctly described by P (L).4 Then λ must
be jeopardized. In this case the fact that the low-level dynamics entails, through
P , a high-level dynamics different from that given by η means that λ misses some-
thing: λ(L) is invalid, otherwise P (L′) would equate H ′. Solutions consist in im-
proving the description of the low-level dynamics. In this paradigm, reductionism
could fail only for practical reasons, for instance if λ has to be too complicated for
commutativity to hold.5

3In more details: in the first case, consider an example where one already knows the empirical
dynamics ηe of a given law of city size distribution (ηe(H) = H ′, where both H and H ′ follow
Zipf laws) (Pumain, 2004). The high-level state H is composed by P of low-level objects (cities
and their populations) whose dynamics is deemed to be λ. Initially, P (L) = H . Suppose now
that P ◦ λ(L) = H ′′: if H ′′ = H ′, P ◦ λ = ηe ◦ P , the reconstruction succeeded, otherwise it
failed. In the second case, consider an example where one wants to observe the adoption rate of an
innovation (a high-level dynamics) from low-level agent interactions (Deroian, 2002). Here also, P
and λ are defined by the modeller, only ηe is induced by assuming the commutativity, i.e. find a η
that satisfies Eq. 12.1. Often, this approach stops here: it rests on the stylized high-level dynamics η
deduced from the interplay of P and λ. But at this point it should be straightforward to try to measure
the empirical ηe, which comes down to the kind of empirical validations carried out in the first case:
“does η(H) = ηe(H)?”

4I.e., P (L) = H for all empirically valid couple of low- and high-level states (L, H). Note that
this is necessarily the case when H describes higher-level patterns on L. This is what some authors
seem to call second-order properties (Kim, 1998).

5For the sake of instrumental practicality then, it is even possible to say that λ depends also on H ,
but only because P (L) = H , which amounts to no more than repeat that λ depends on L, through
the instrumental “simplifier” P .
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12.1.4 Emergentism

In spite of that, it may also be that reductionism fails for ontological reasons: P

is incorrect and, more generally, it is impossible to define P . This is for example
what Anderson (1972) suggests in his famous quote: “Psychology is not applied biol-
ogy.” In other words, even with an ideally perfect knowledge of λ, reconstruction
attempts would fail from the beginning because of the inobservability of H from
L. Here the whole is more than its parts, and the higher level enjoys some sort of
independence, even when acknowledging that in reality everything is physically
grounded. Obviously, this is the emergentist position. H is substantially indepen-
dent, and causation relationships between both levels are necessary to expect that
L and λ explain something about H and η — and possibly reciprocally when as-
suming downward causation. In other terms, η is enriched to take L into account,
and λ may be enriched to take H into account: λ(L,H) = L′, η(L,H) = H ′; with
possibly both levels exerting a causally efficient influence on each level dynamics.
In fine, the modeller wants both λ and η to be empirically correct. So far, this is not
formally different from what a “pure” dualism would yield.

Yet when considering that it is the lower-level that causes the emergence of the
higher-level, most problems underlined in Sec. 11.2 & 11.3 emerge as well. Still,
reductionism is uneasy to trust, because of its conception of a lowest level where
all causality happens and for which projection functions P onto any level do exist
(at least in theory). So, in many cases where reductionism actually fails in spite of
a “solid” λ, complex system methodology nonetheless agrees with the emergentist
stance.

12.2 A multiple mode of access

12.2.1 The observational viewpoint

This dilemma appears to be easily solved from an observational viewpoint. Within
this framework levels are only a different way to access a same process, and L and
H are “observation” functions: the high-level and the low-level are simply two
simultaneous manifestations of the same process. Nonetheless, this is still a monist
conception of reality: there is a single ontology, that of the process.

When levels themselves are merely informations, links between levels are thus
bound to be only informational. The higher level may yield sufficient information
about the underlying process, so that we can have an idea of what happens and
what does not happen at the lower-level, and vice-versa. For example, when some
individual expresses some stress (a psychological observation), one could guess
that the blood pressure is higher (a biological observation). There is top-down
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Figure 12.1: Relationships between levels and their dynamics in the case of (1)
reductionism, (2) emergentism or dualism, and (3) observationism.

as well as bottom-up informational constraining, because information from some
level specifies the dynamics of another level. To clarify this, dynamics could be
rewritten as λ(L|H) = L′ and η(H|L) = H ′ — see Fig. 12.1. Here again the success
of the model will be measured by the empirical correctness of both λ and η.6 If
for instance there is ideally enough information in the lower level about the higher
level, then sufficiently valid models of the lower level bear hopes that the higher
level could be rebuilt.

In case the reconstruction fails, there are two alternatives: either, as before, λ

and/or η are not precise enough. Or, the chosen decomposition in levels is not
informative enough about the phenomenon, and we have to check whether we
are not missing something crucial when designing levels. Lane (2005) underlines
this effect with a striking metaphor about “details”: there is basically no use try-
ing to explain crises from dynamics on social classes, when the relevant item that
is informative of the high-level crisis is actually at a very lower level concerning
individual action. In other words, sometimes there are details that may account
for the high-level dynamics such that the chosen decomposition into a lower-level

6One can introduce useful modeling approximations that seemingly give some thickness to the
higher-level, but are clearly not to be confused in any way with substantial independance or down-
ward causation. A frequent knack consists indeed in considering that the high-level is evolving
slowly comparatively to low-level objects (which sometimes are considered low-level precisely be-
cause their timescale is faster), therefore being somewhat fixed and apparently independent. In
this respect, some distinguish the “emergence” of higher-level items (characterized by larger, slower
quantities) from the “immergence” of lower-level items in a stable, fixed high-level environment —
such as boundaries (Bourgine & Stewart, 2004). This is not far from what Rueger (2000) calls “robust
supervenience,” in case a high-level phenomenon enjoys some temporal stability.
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dynamics is essentially unefficient for high-level prediction. Here, it may simply
be that observing L will never yield enough information about H , and this bears
identical consequences for modeling.

On the whole, this is a strong change in viewpoint:

• First, there is no “substantial” reality of levels, but an observational reality only
(Sec. 11.4).

• Second, and consequently, there is no reciprocal causation of higher- and
lower-level, but simply informational links: high- and low-levels are distinct
but simultaneous observations of a same underlying process, through an in-
strumental “equipment” defined by the observer/scientist, that may or may
not yield information about other levels.

• Third, and most importantly, for some phenomena it is hopeless to expect to
rebuild them from some given lower-level descriptions — not because there
is something irreducible in the higher level, that provides it with thickness,
but because the lower level of description itself is essentially maladapted. Thus
improving dynamics is not sufficient, and rethinking levels is mandatory.

• Lastly, the conception of “higher” and “lower” levels becomes simply a no-
tion of different levels, because of a distinct instrumental apparatus. Therefore,
problems regarding the specification of why the “higher” level is truly above
the lower level (timescale? size? inertia?) vanish.

In this respect, both reductionism and emergentism are inadequate concep-
tions for appraising and modeling complex systems. Reductionism works in par-
ticular cases where the low-level description yields enough information about the
high-level, giving the impression that the high-level is reducible, while in fact it is
simply fully deducible. Therefore, reductionism makes the bet that physical interac-
tions yield enough information about any other “higher” level, at least in principle.
This is a intuitive yet very audacious bet. Emergentism on the other hand bears
serious causality problems. Dualism is consistent theoretically, but clearly lacks
plausibility (especially if it leads to subjective pluralism).

Application to epistemic network reconstruction In Part II we have adopted an
apparent reductionist stance, starting from low-level description (epistemic net-
works) to rebuild high-level phenomena (epistemic communities, inter alia). But
being reductionist would amount to say here that everything could be caused by
networks built on agents and concepts. Obviously, this is not the case: only for the
H we exhibited in Part I do we have a valid reconstruction from the L suggested in
Part II. In other words, we showed that this L yields enough information about the
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stylized facts H we selected: we could define a P such that P (L) = H , thanks, inter
alia, to Galois lattices. To compare with the case of temperature, the high-level in-
formation we had through experts is like the temperature of a perfect gas obtained
through a thermometer: there are low-level phenomena (epistemic network and
molecular activity alike) from which we can deduce the high-level information.

More broadly, the claim is thus the following: given a high-level phenomena, it
may be possible to find a finite set of low-level observations (potentially only one)
that yield enough information to fully deduce the given higher level. But there is
no set of finite low-level descriptors such that any (high-level) phenomenon can be
fully deduced, even in theory — and not even at the physical level of atoms and
molecules.

12.2.2 Introducing new levels

By contrast, observationism is both consistent and potentially efficient to rebuild
any given complex phenomenon as long as levels are relevantly defined.7 In this
respect, explaining phenomena at some level may require more than one level. A
quite frequent need is that of a third level, intermediary between higher and lower
levels: a “meso-level” deemed more informative than the macro-level while more
assessable than the micro-level; sometimes crucial to understand some types of
phenomena (Laughlin et al., 2000). A triad of macro-, meso- and micro-levels seems
rather arbitrary, and one may well imagine that some research topics involve even
more levels (such as e.g. studying a (i) system of (ii) cities made of (iii) coalitions
of (iv) agents who are (v) learning neural networks). While in some cases new
levels are necessary (because the basic levels are essentially deficient), introducing
a few levels may also be just more convenient. Here, there is no trouble using as
many levels as desired, since there is only one unique and simultaneous process
producing to all levels — and many ways to look at it. At this point activity-based
modeling is a precious modeling feature, for it enables a multi-level appraisal but
also yields a natural insight on level-specific properties (Bonabeau, 2002).

Now, how to design new levels? Various authors support the idea that intro-
ducing a new level is interesting insofar as it makes possible a better understand-
ing and/or prediction of the system (Crutchfield, 1994; Clark, 1996; Shalizi, 2001;
Gershenson & Heylighen, 2003). More precisely, the argument is essentially that
emergent properties are high-level properties that “are ‘easier to follow,’ or ‘simplify
the description,’ or otherwise make our life, as creatures attempting to understand the
world around us, at least a little easier” (Shalizi, 2001). This calls clearly for choosing
an observation level that provides easily key information on a given phenomenon.

7It is also compatible with reductionism which is a particular case where a level is “fully-
informative” about another level (generally higher).
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Here, instead of considering (emergent) high-level properties as something com-
plicated, impossible to understand, or even irreducible — a negative and slippery
definition — this informational attitude looks the high-level as something that
must enable a more convenient understanding and prediction of the phenomenon
— a positive definition.

This stance is very enlightening theoretically: to give meaning to complex sys-
tems we design new observational instruments and description grammars that
help reduce reality dimensions and complexity. Going further operationally, com-
pelling methods (Crutchfield, 1994) and effective algorithms (Shalizi & Shalizi,
2004) have been proposed to find and build automatically & endogeneously a new
level of observation (i) based on low-level phenomena and (ii) simplifying their
description. In any case, these tools appear to be powerful for detecting higher-
order properties and informative, relevant patterns, for it yields an immediate de-
scription of H and, if the grammar is simultaneously built, a valid η too (at least
statistically). However, as Shalizi (2001) notes, “the variables describing emergent
properties must be fully determined by lower-level variables.” It becomes clear then that
the new simplified “high-level” description is a clever projection function P of the
lower level.

12.2.3 Rethinking levels

More generally, such methods produce relevant “high-level” description gram-
mars, possibly hierarchically ordered, which are still based on an initial lower level
(Bonabeau & Dessalles, 1997). In addition, while simpler, the newly created levels
are not necessarily (i) more natural and intuitive or (ii) more importantly, com-
plete: their efficiency is indeed limited in case the reductionist approach fails, i.e.
when the chosen lower levels are not informative enough about the considered
phenomenon. What happens for instance when creating high-levels from neural
activity in order to describe some psychological phenomenon, while in fact there
are crucial data in glial cells (Pfrieger & Barres, 1996)? What new descriptions ex-
tracted from neural activity could be effective when glial cells do a key part of the
job? Consider indeed someone trying to make learning emerge from neurons and
failing to do so: she could conclude that learning is a irreducible high-level de-
scription that emerges from neurons, yet models of such a thing would be irreme-
diably unsuccessful, if not reconsidering lower level design. Neurons are simply
not sufficiently informative about learning processes. As such, emergentism could
also be a dangerous pathway.

Also, the question here goes deeper: can an automatic (bottom-up) process
yield an essentially new vision on things? This sounds as if a deterministic machine
could address the problem of ontological uncertainty. In short, it may be hopeless
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to expect a machine to yield a truly innovative insight starting from already defi-
cient levels. Coming back to the central problem of rebuilding efficiently a given
phenomenon through a “complex system” approach, this means that mistakes are
not to be found necessarily in the dynamics λ, η, etc. nor in putative projection
functions P , Q, etc.; but rather in the definition itself of levels L, H , etc. In other
words, a successful reconstruction may require not only to find a valid and ef-
ficient grammar, but also to rethink the very bricks that constitute any potential
grammar.





Chapter 13

Reintroducing retroaction

13.1 Differentiating objects

In the previous chapter, we detailed consequences on modeling methodology of
the idea that different levels are simply different manifestations of a same process.
By denying them any substantial reality and by dismissing any causal efficiency
from a level to another, downward causation should be interpreted as informa-
tional dependence of low-level phenomena on high-level phenomena.1

Yet, of course, causality may still occur between distinct objects at a same
level: for instance, agents have a causal influence upon other agents. Causality
may also happen between different levels, as long as it happens between different
items: a hand can move the molecules that constitute a stick. A given wave moves
molecules other than those that constitute this wave. Here, there is simultaneity in
the movement of the hand and of its molecules, while there is causality of the hand
on the stick or, equivalently, on stick molecules. In this respect, when defining a
level one must describe the objects it contains as well as the causal links between
these objects.

To illustrate this, consider that a neuron can interact with another neuron and at
the same time, at a higher-level of observation, a bunch of neurons is able to affect
other bunches of neurons. Observing a bunch of neurons provides partial infor-
mation on the state of each individual neuron, whereas causality happens between
different bunches of neurons and, simultaneously, between neurons of these differ-
ent bunches; depending on whether one looks high-level or low-level. Therefore, if
one acknowledges that there are also glial cells on the playground, causal relation-
ships are to be expected between neurons and glial cells. At the level of the brain,

1The modeler may yet overlook the question of the status of levels, as long as equations correctly
render inter-level links/dependencies (Bourgine, personal communication). It is however really
important to know where the error comes from when reconstruction fails — this is why a particular
attention must be paid to level design itself.
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one may consider low-level observation of neurons and high-level observation of
psychological facts. Suppose now that refining the picture leads to consider the
nervous system as a set of both neurons and glial cells. From there, high-level ob-
servation instruments can be designed for neurons and, separately, for glial cells.
Causation occurs between neurons and glial cells (as it occurs between two neu-
rons too), and there is a real efficient causation when glial cells observed from a
high-level standpoint induce a change on individual neurons. This shall not be
downward causation.

13.2 Agent behavior, semantic space

This point however helps understanding an intriguing objection that may be raised
when considering intentional systems: in social systems notably, agents are able
to observe what happens at a higher level, and modify their behavior accordingly.
Large-scale artefacts created by agents, such as semantic items or institutions, seem
to interfere with laws at the agent level. Does this induce some kind of downward
causation? As we will show below, such causal influence of the higher level actu-
ally corresponds to coevolution of different kinds of objects — thus accentuating
the need for accurate level descriptions, and for accurate distinction between ob-
jects.

Consider again Schelling’s model outlined in Sec. 11.4: one could be tempted to
say that the higher level exerts a causal influence on the lower level: agents decide
to join same-color neighborhoods. As we noted, it is simply a two-mode access
to a same phenomenon, where agents go increasingly to places where they are
surrounded by same-color agents. Eventually, using “neighborhoods” as a new
high-level of description, agents appear to join same-color neighborhoods.

In the real world however, it seems that agents do not stick to their alleged
low-level behavior (i.e. going where they are surrounded by at least α% of same-
color neighbors). Instead, they actually adopt another kind of behavior by really
deciding to move to neighborhoods, not only to places verifying local properties.
Thus, their local, low-level behavior itself is modified by this high-level feature.
Believing in this case that this is downward causation would require to ignore that
the agent behavior has been enriched. More precisely, the low-level description has
been modified by adding a new capability to the cognitive equipment of agents:
agents are now equiped with the notion of neighborhood.

Thus, what used to exist only in the eye of the modeler/observer — the pres-
ence or not of neighborhoods — has been introduced within the model, under the
form of a high-level representation available to agents: agents are observers and
they can access high-level descriptions. In the original Schelling model, the fact
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Figure 13.1: Differentiating several kinds of objects restores the discrimination be-
tween causal links (solid lines) and informational links (dashed lines). The general
picture (top) is applied to the two examples of this section (below).

that there is a neighborhood does not change agent behavior: neighbor colors not
neighborhoods have a causal impact on agents. In the modified model, which is
more realistic,2 neighborhoods have a causal impact on agents in addition to local
features such as neighbor colors. In both models, agent moves can be provoked by
color-based (semantic) features; in the new one, they are furthermore affected by
neighborhoods. There is still no downward causation, but a richer causal impact
of other neighbors, both low- and high-level (local neighbors, and neighborhoods).3

2With agents more sensible to considerations on the neighborhood than to a low-level scrutiny of
each location.

3High- and low- level semantic features are two observations of a same process, so there may also
exist an informational overlap of both levels (e.g., the existence a blue neighborhood bears low-level
information on neighbor colors).
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13.3 Coevolution of objects

Here, agent behavior is causally linked to a semantic space, appraised through
representational capacities, either low-level (“color of closest neighbors”) or possi-
bly high-level (“belonging to a neighborhood”). Therefore, we may more generally
discern two kinds of influence:

(i) upward/downward informational dependence of a level on another, through
different observation levels of a same phenomenon. Water molecules are not
meant to take the wave into account, and there are two modes of access: in-
formational links clarify the classical picture of downward causation (Bitbol,
2005).

(ii) co-evolution of objects, through an efficient explicit causality between two
different kinds of objects given a priori. Obviously, this remains a classical
causation.

The global picture is summarized on Fig. 13.1 — put this way, it should also be
possible to address tangled hierarchies explicitly without having to deal with cau-
sation violations.

To take another example, suppose we try to model the way agents create a
semantic structure and paradigms through concept associations, which themselves
in turn influence agents by what seems at first sight to be downward causation.
This sounds like an enriched version of the model of Part II, where agent behavior
has been extended to take into account high-level phenomena; as such, we get
off the framework of the simple emergence of H . We must then distinguish: (i)
the two-mode access to different features or phenomena of epistemic networks
(agents and concepts, vs. social semantic and epistemic communities), and (ii) the
co-evolution between objects belonging to the three kinds of networks.

Introducing co-evolutionary objects the way we did is thus crucially linked to
level design. Indeed, accounting for the morphogenesis of epistemic networks us-
ing social data only may be essentially unsufficient. This compels the modeler to
modify the description: adding a semantic space (containing concepts) is required
to explain the formation of such networks and the appearance of patterns (com-
munities of agents).

13.4 “Stigmergence”

A co-evolutionary framework also yields an insight on why high-level artifacts
(such as institutions) may have a proper influence on agents. Here social acts are
actually “immerged” in an environment which influences social behavior and on
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which agents may act. For instance, when an agent arrives in an epistemic net-
work links between concepts are already present — a portion of the bibliography
has already been written — but she may act upon them and make semantic asso-
ciations vary and influence other agents (and herself).

In a more abstract manner, institutions are produced by agents, yet have a
causal effect on agents because they can take them into account — they are equipped
to recognize them. When agents build artifacts, create institutions, they produce
something that is not ascribed to the particular social situation being modelled.
Artifacts do exist outer of agents, they are stigmergic — in the sense Karsai & Pen-
zes (1993) use when they describe wasps building their comb and being influenced
by it, generalized in (Bonabeau et al., 2000) with agents producing external, stig-
mergic three-dimensional structures that influence them. Thus we may talk of
“stigmergence” of institutions or artifacts, not emergence; inducing in this case
(diachronic) co-evolution, not downward causation.





Conclusion of Part III

In most scientific disciplines, levels of description can be considered to rely on
objects which are themselves the focus of lower-level disciplines. In this picture,
complex system science has been the cornerstone of a recent and natural effort to
try to explain higher level phenomena with the help of lower-level descriptions.
As an interdisciplinary area of research, this new field attempts to bridge levels
by binding both lower and higher levels into a systemic framework, in order to
eventually rebuild phenomena through the interplay of both high- and low-level
objects.

This also requires considerations on how relationships between levels should
be appraised. After reviewing several possible attitudes towards the status of lev-
els (dualism, reductionism, and emergentism) we supported the idea that these
three stances were possibly unsatisfactory — either because of plausibility, success-
fulness or consistency. Rather, noting that even the lowest level could not be the
”ultimate and monadic level”, we built upon recent suggestions that levels were
simply different modes of access to a process. This led us to present and adopt a
viewpoint inducing only one ontology, that of the process, and many ways to look
at it. In this framework, levels are instrumental apparatus created by scientists to
partially access reality: they are distinct but simultaneous observations of a same
underlying process. Thus, what appeared to be upward or downward causation
can be reduced to informational dependence.

We then detailed the implications for modeling methodology. Indeed, a given
description level may only yield (partial) information about other levels. In some
cases, this information is unsufficient to rebuild a given phenomenon, and new
levels may be required. In the perspective of reconstruction, because some given
levels may be essentially unsufficiently informative for explaining a given phe-
nomenon, we hence insisted on the idea that designing levels was as crucial as de-
signing the dynamics. In particular, in the case of network morphogenesis the fact
that, say, clustering coefficient reconstruction from the strict social network fails
may be due to a wrong low-level dynamics λ. Yet, as regards epistemic commu-
nity structure reconstruction, there is simply no P that may yield H from the strict
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social network of collaborationships. We are compelled to enrich the description
of L, introducing epistemic networks.

Dismissing the possibility of retroaction could nevertheless be puzzling in sev-
eral cases, in particular in artefactual systems. For instance, when studying inno-
vation and social change, innovation is obviously not only a question of increas-
ing production with no influence on the production processes: agents modify the
production processes with respect to what they produce – hence, retroaction of-
ten happens. Putting forward level design helps reintroducing the possibility of
causally efficient actions between levels, through distinct objects. Indeed, this kind
of retroaction must not be confused with alleged downward causation; it only fol-
lows from objective differentiation, entailing causation on a “horizontal” basis.
Agents produce something that remains external, then influences their actions. In-
stead of emergence, we suggest that this notion of reciprocal action of an external
item should been denoted by the new term stigmergence.
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“Explaining the distribution of cultural representations would be isolating the causes (...) of
the capacity for some representations to propagate until becoming precisely cultural, that is,
revealing the reasons of their contagiosity.”4 (Lenclud, 1998)

The present dissertation provides a theoretical overview of the purposes of
complex system reconstruction along with an empirical achievement on a partic-
ular case study of knowledge community rebuilding. We have argued that epis-
temic communities are mostly produced by the co-evolution between agents and
concepts. More precisely,

• in Part I, we proposed a method for describing and categorizing knowl-
edge communities as well as capturing essential stylized facts regarding their
structure. In particular, we rebuilt the taxonomy of a whole epistemic com-
munity using a formal framework based on Galois lattices. Then, studying
the evolution of these taxonomies made possible an historical description of
knowledge fields, describing inter alia field progress, decline, specialization,
interaction (merging or splitting).

• in Part II, we micro-founded the particular structure observed in Part I: which
processes at the level of agents may account for the emergence of epistemic
community structure? To achieve a morphogenesis model of this phenome-
non, and thus of epistemic networks, we needed to build tools enabling the
empirical estimation of interaction and growth processes. Then, assuming
that agents and concepts are co-evolving, we successfully reconstructed the
structure of a real-world scientific community on a selection of relevant
high-level stylized facts.

4“Expliquer la distribution des représentations culturelles, ce serait isoler les causes (...) du pouvoir détenu
par certaines représentations de se propager jusqu’à devenir justement culturelles, c’est-à-dire déceler les fac-
teurs de leur contagiosité.”
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• in Part III, we argued that modeling social complex systems tends to require
the introduction of co-evolutive frameworks of the kind presented in the
preceding parts. More generally, investigating the methodology of complex
system science, we suggested that some high-level phenomena cannot be
explained without a fundamental viewpoint change in not only low-level
dynamics but also in the design of low-level objects themselves.

Naturalizing cultural anthropology As such, this thesis also makes a prelim-
inary to the study of knowledge diffusion and cultural pattern formation. In-
deed, three canonical explanations are available to account for cultural similarity
(Aunger, 2000): (i) genetics (i.e. convergent biological evolution), (ii) individual
learning (through convergent cultural evolution), and (iii) social learning (through
transmission and adoption of knowledge). It is easy to dismiss genes as an appro-
priate explanation: culture evolves on a dramatically shorter time-scale than that
of genetic evolution. The second point alone, because it assumes the existence of
cultural attractors for mankind, lacks credibility: here, cultural diversity confronts
cultural similarity. On the contrary, social epistemology underlines the fact that
knowledge construction is only marginally individual-based. Kornblith (1995) for
instance insists on the influence of society from birth: we are immerged from the
beginning in a cultural and conceptual bath, “Language is not reinvented by each
individual in social isolation, nor could it be.”

The third argument, social learning, or social cognition, is thus a convincing ac-
count — Bloch (2000) summarizes the point: “One generation may have no idea about
electricity, while the next may be innovating a new computer program under Windows.
This is not due to a speeding up of ’cultural evolution’ but the result of a totally different
process: the fact that humans can communicate knowledge to each other.” Subsequently,
the co-evolutionary morphogenesis model presented here is an important step for
explaining cultural similarity through a naturalistic approach (Sperber, 1996): the
structure and dynamics of epistemic networks has indeed a crucial impact on pro-
cesses taking place on it, such as, precisely, knowledge propagation. In this re-
spect, Pastor-Satorras & Vespignani (2001) for instance show that even with a very
simplistic epidemiologic model, disease propagation follows very different paths
depending on network structure.

Yet, our morphogenesis model nevertheless dismissed important considera-
tions regarding in particular:

1. agent behavior enrichment, following the way cognitive economics improve
‘classical’ economics (Bourgine, 2004). For instance, agent behavior could
be enriched to use knowledge on epistemic communities — high-level phe-
nomena — so that it is closer to reality. This is credible at least in scientific
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networks: agents refer to themselves and their work using e.g. disciplines,
they do not only interact on the basis of individual properties.

2. endogenization of additional phenomena which, as suggested at the end of
Part II, is strongly linked to modeling novelty and induces ontological uncer-
tainty. Here, it is likely that we could not dismiss purely historical features:
we certainly reach the boundaries of any reconstruction model in social sci-
ence.

Bridging these caveats, when possible, and assessing their impact on the struc-
ture of epistemic networks — especially on features that precisely influence knowl-
edge propagation and transmission — would be a first improvement. Besides
studying cultural similarity on a social basis, including homophily, we should also
investigate why cultural similarity relates to conceptual similarity, on an individ-
ual and cognitive basis. How comes that concepts cover identical representations
among several agents of a same (epistemic) community? Working on the notion of
“concept” appears to be decisive in order to depart from a strict memeticist point of
view, and especially to take into account critics of memetics by cultural anthropol-
ogy (Kuper, 2000; Atran, 2003). On one hand indeed, memetics could appear as a
seducing program with respect to social learning, for it offers three significant fea-
tures: a unit of cultural transmission (memes), a process of transmission (imitation)
and characteristics of the transmission (survival of fitter ideas). Yet, memetics also
entails three major drawbacks: (i) the atomistic assumption that there are bits of
knowledge is very controversial; as is (ii) the assumption that there is high-fidelity
transmission (imitation), when there is in most cases contextual reformulation, or
reproduction; finally memetics does not address (iii) what a fitness function is,
and what makes a meme be selected. In this thesis, we nevertheless assumed that
using the same term was identical to sharing the same representation, and agents
gathering in an event were exchanging concepts, without alteration or reinterpre-
tation — a viewpoint that memetics would not deny. Hence, acknowledging the
weaknesses of this position, we should also improve the cognitive description of
processes at work in epistemic networks.5

5In particular, several authors argue that concepts are patterns in a semantic space (Colby, 2003).
Empirical evidence suggests that e.g. kinship concepts are roughly located in the same area of a
multidimensional semantic representation (Romney et al., 1996). In other words, people of a same
“culture”, using the same language could be almost in agreement on the meaning of concepts. Hen-
rich & Boyd (2002) explain such aggregation by assuming that there are cognitive attractors: then, a
concept is a pattern of “versions” that ressemble each other. As Sperber notices, “a myth is the set
of its versions.” This position does not deny that concepts are “continuously graded entities,” but it
suggests that these entities aggregate around alleged attractors. Eventually, classes of equivalences
of patterns might thus be of great use to model concepts.
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Towards an autonomous society In any case, the work presented in this dis-
sertation is a first brick towards enabling agents to understand the dynamics of
the global social system they are participating in, and more broadly towards the
achievement of a truly autonomous society, in Castoriadis’ (1983) sense: a society
which, knowing its own structure, organization, and representations, is able to de-
termine its own laws. Then, what would indeed be a society which knows its own
dynamics, and which precisely adapts its behavior with respect to the knowledge
of its own dynamics?
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weighted, 82

novelty, 126

observationism, 139

paradigmatic category, 31
partial order

subfield & superfield, 32
partially-ordered set, 52
Poisson law, 79
poset, see partially-ordered set
power-law, 78
preferential attachment, 79, 97

Q-analysis, 34

random graph
Barabasi-Albert model, 79
Erdős-Rényi model, 77
rewiring, 46
small-world, 78
Watts-Strogatz model, 78

reconstruction
issues, 9
micro-foundation, 75

reductionism, 134

selection heuristics, 54
social cognition, 18, 164
social distance, see distance

social structure, 10
society of knowledge, 9
stigmergence, 156
structural equivalence, 24

taxonomy, 22
Aristotelian, 31
evolution, 57
folk, 18

transitivity, 89
tree, 31

zebrafish, 19
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Abstract

Agents producing and exchanging knowledge are forming as a whole a socio-semantic
complex system. Studying such knowledge communities offers theoretical challenges,
with the perspective of naturalizing further social sciences, as well as practical challenges,
with potential applications enabling agents to know the dynamics of the system they are
participating in. The present thesis lies within the framework of this research program.
Alongside and more broadly, we address the question of reconstruction in social science.
Reconstruction is a reverse problem consisting of two issues: (i) deduce a given high-level
observation for a considered system from low-level phenomena; and (ii) reconstruct the
evolution of some high-level observations from the dynamics of lower-level objects.

In this respect, we argue that several significant aspects of the structure of a knowl-
edge community are primarily produced by the co-evolution between agents and con-
cepts, i.e. the evolution of an epistemic network. In particular, we address the first recon-
struction issue by using Galois lattices to rebuild taxonomies of knowledge communities
from low-level observation of relationships between agents and concepts; achieving ulti-
mately an historical description (inter alia field progress, decline, specialization, interaction
– merging or splitting). We then micro-found various stylized facts regarding this particu-
lar structure, by exhibiting processes at the level of agents accounting for the emergence of
epistemic community structure. After assessing the empirical interaction and growth pro-
cesses, and assuming that agents and concepts are co-evolving, we successfully propose
a morphogenesis model rebuilding relevant high-level stylized facts. We finally defend a
general epistemological point related to the methodology of complex system reconstruc-
tion, eventually supporting our choice of a co-evolutionary framework.

Keywords: Complex systems, social cognition, reconstruction, applied epistemology, Galois
lattices, taxonomies, dynamic social networks, mathematical sociology, cultural co-evolution, sci-
entometrics, knowledge discovery in databases.
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