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Communities of agents manipulating, producing and exchanging knowledge are forming as a whole a socio-
semantic complex system achieving widespread social cognition — with concepts being introduced and manipulated
in a rather decentralized fashion. Scientists, software developers, political webloggers are examples, among others,
of such distributed knowledge construction systems. Questions traditionally arise as to how these communities are
forming, evolving, interacting, and, more broadly, what kind of processes are at work within them — particularly
as regards knowledge diffusion. Networks, in particular, have emerged as an unavoidable formal framework to
capture essential stylized facts of the structure of these knowledge communities, addressing issues pertaining to
social epistemology, knowledge economics and cultural anthropology (Kitcher, 1995; Cohendet et al., 2003), along
with new toolboxes borrowing extensively to graph theory and systems dynamics (Newman, 2003).

Often, though, knowledge networks are treated like any other real network, with agents behaving in a way
sometimes not much more complex than molecules. Even when the behavioral complexity of agents is taken into
account, social network models seem to neglect epistemic features. Our goal is to emphasize the intertwining of
social and semantic networks, both theoretically and empirically: we first suggest that binding these networks
yields new kinds of patterns, showing notably how community structure may subsequently be appraised. We then
present some implications on how structural dynamics and processes could be considered and modeled. At the
same time, we will sketch out and describe an empirical application on a particular system of scientists working
on a well-bounded domain.

Towards epistemic patterns. Network structure is classically described through “patterns”, that is, statistical
parameters computed on an underlying graph representing inter-agent relationships. Patterns are designed to
relevantly match sociological descriptions such as, for instance, leadership position, transitivity and community
cohesiveness. In this respect, existing patterns include, to cite a few, clustering coefficients and “cliquishness”
(Watts and Strogatz, 1998; Robins and Alexander, 2004), node degree distribution and the broadly shared “scale-
free” property (Barabási and Albert, 1999), largest connected component size and one-mode community structure
(Pattison et al., 2000; Girvan and Newman, 2002; Powell et al., 2005). In turn, numerous models have subsequently
been developed to provide an understanding of pattern formation by identifying key processes leading to some
given shape (Skyrms and Pemantle, 2000; Albert and Barabási, 2002; Durlauf, 2001; Newman et al., 2001, inter
alia).

Yet, patterns and thus models are frequently adapted to single social networks only;1 hence they do not seem
to be able to account for the specificity of knowledge networks. To access new patterns, possibly prone to be
adequate to knowledge networks, we introduce the notion of epistemic network as a compound of two co-evolving
networks, a social network and its associated semantic network. Next, we show how epistemic networks are a
natural framework for appraising knowledge community structure.

Epistemic communities. A knowledge community is a small, embedded sub-society of knowledge, with specific
topics — partially independent, partially overlapping — which in turn appears to be structured in several im-
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plicit sub-communities, while expertise is heterogenously distributed over all agents. Boundaries appear between
subgroups, both horizontally, with distinct areas of competence, and vertically, with various levels of specificity.

Such communities may be seen as “epistemic communities” (ECs), i.e. groups of agents who are working
on and dealing with common topics, sharing a common goal of knowledge creation (Haas, 1992; Cowan et al.,
2000). While it remains questionable whether patterns relying on strict social networks could help detecting ECs,
we suggest that a socio-semantic framework may be more adequate to this task. We therefore provide a formal
definition of an EC as “the largest group of agents who share and work on the same concepts” — as such, this
notion is not unrelated to structural equivalence (Lorrain and White, 1971). In this context, an EC is understood
as a descriptive instance only, not as a coalition of people who have some interest to stay in the community: it is
a set of agents who, simply, share the same knowledge concerns.

To implement this definition, we need a binary relation connecting agents on one side and “concepts” or
knowledge units on the other side — as such a bipartite graph derived from the epistemic network. Assuming
that such ECs are structured in fields and subfields of common concerns, we show that the Galois lattice structure
is an appropriate method for representing knowledge network taxonomies, by automatically organizing a given
group into hierarchic, embedded taxonomies of ECs. In addition, it accurately renders overlaps among epistemic
communities, commonly called interdisciplinary fields. Applied on a community of embryologists interested in a
particular model animal, EC taxonomies provide a surprisingly accurate epistemological description (Roth and
Bourgine, 2006). On the whole, such patterns take advantage of the duality inherent to knowledge groups —in
our case agents affiliated with topical categories (Breiger, 1974)— as opposed to single-network-based methods,
using for instance social relationships or semantic proximity.

Interplay between structure and knowledge diffusion. Going further, as network structure generally
affects propagation processes (Morris, 2000; Pastor-Satorras and Vespignani, 2001; Lloyd and May, 2001; Cowan
et al., 2002; Deroian, 2002), patterns proper to epistemic social networks may likewise be helpful to evaluate the
impact of topological properties on information diffusion. Real-world knowledge networks are indeed plausibly
behaving diversely from those created from classical morphogenesis models adapted to “universal” networks.

In particular, we will comment a recent study (Cointet and Roth, 2007) showing that, even for a simple knowl-
edge diffusion protocol, several common network topology models do not make it possible to accurately reconstruct
the behavior of a realistic network — in our case, the above-mentioned real network of embryologists. More pre-
cisely, we examine the diffusion dynamics of a single piece of information using a very basic knowledge transmission
protocol on a simulation-based model: agents interact and get instant, perfect and irreversible knowledge of the
information if their interlocutor has it. Using Erdös-Rényi random graphs (Erdős and Rényi, 1959, based on a
uniform wiring probability p) and “scale-free” networks (Barabási and Albert, 1999, based on a power-law degree
distribution P (k) ∼ kα) as best approximations of the real network (that is, using empirically-measured parameter
values), we notice that both models fail to reproduce diffusion phenomena as they happen in the corresponding
empirical network.2 Using however an improved network model based on joint events gathering groups of agents,
which renders both the connectivity structure of a scale-free network and the local clustering of a cliquish network
(Guillaume and Latapy, 2004), diffusion appears less dissimilar to real-network-based diffusion, thus indicating
that community-based interaction behaviors may produce more realistic topologies.

Nevertheless, the performance of this latter model is better but remains fairly inaccurate. While patterns
reproduced by these models may arguably be meaningful as such, they are possibly unsufficiently faithful to
the original network so that they could serve as a basis for a knowledge diffusion model — even the simplest
one. Obviously, even in the framework of epistemic networks (or co-evolving social and semantic networks), it
is unlikely that there exists an “ultimate” morphogenesis model, i.e. one that ideally reconstructs any possible
statistical parameter characterizing a network. Similarly, it should not be possible to exhibit ultimate topological
properties. However, given a few, selected, relevant diffusion processes, it should be possible to identify a few
relevant patterns which a morphogenesis model should reproduce, then benchmark the whole system behavior
with real-world networks; thereby substantiating both morphogenesis and diffusion models (Roth, 2007).

In such a case, it might be necessary to diverge from universal statistical parameters such that the scale-free
2Worse, they both perform identically; suggesting that, for this kind of process, there is no improvement in considering a scale-free
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degree distribution, and explore more precise patterns adapted to knowledge networks, thus introducing new
classes of (epistemic) networks. Considering altogether epistemic patterns and diffusion processes may constitute
a crucial step in explaining how network structure affects concept propagation and, at the same time, how concept
propagation in turn affects the network.
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Benôıt. (2003). Emergence, Formation et Dynamique
des Réseaux – Modèles de la morphogenèse. Revue
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